首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation and deactivation of macrophages are of considerable importance during the development of various disease states, atherosclerosis among others. Macrophage activation is achieved by oxidized lipoproteins (oxLDL) and is determined by oxygen radical (ROS) formation. The oxidative burst was measured by flow cytometry and quantitated by oxidation of the redox-sensitive dye dichlorodihydrofluorescein diacetate. Short-time stimulation dose-dependently elicited ROS formation. Diphenylene iodonium prevented ROS formation, thus pointing to the involvement of a NAD(P)H oxidase in producing reduced oxygen species. In contrast, preincubation of macrophages with oxLDL for 16 h showed an attenuated oxidative burst upon a second contact with oxLDL. Taking into account that oxLDL is an established peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist and considering the anti-inflammatory properties of PPARgamma, we went on and showed that a PPARgamma agonist such as ciglitazone attenuated ROS formation. Along that line, major lipid peroxidation products of oxLDL, such as 9- and 13-hydroxyoctadecadienoic acid, shared that performance. Supporting evidence that PPARgamma activation accounted for reduced ROS generation came from studies in which proliferator-activated receptor response element decoy oligonucleotides, but not a mutated oligonucleotide, supplied in front of oxLDL delivery regained a complete oxidative burst upon cell activation. We conclude that oxLDL not only elicits an oxidative burst upon first contact, but also promotes desensitization of macrophages via activation of PPARgamma. Desensitization of macrophages may have important consequences for the behavior of macrophages/foam cells in atherosclerotic lesions.  相似文献   

2.
Phagocytosis of apoptotic cells and the resolution of inflammation   总被引:10,自引:0,他引:10  
Clearance of apoptotic cells by phagocytic cells plays a significant role in the resolution of inflammation, protecting tissue from harmful exposure to the inflammatory and immunogenic contents of dying cells. Apoptosis induces cell surface changes that are important for recognition and engulfment of cells by phagocytes. These changes include alterations in surface sugars, externalization of phosphatidylserine and qualitative changes in the adhesion molecule ICAM-3. Several studies have contributed to clarify the role of the receptors on the surface of phagocytes that are involved in apoptotic cell clearance. The phagocytic removal of apoptotic cells does not elicit pro-inflammatory responses; in contrast, apoptotic cell engulfment appears to activate signals that suppress release of pro-inflammatory cytokines. Therefore, clearance of apoptotic leucocytes is implicated in the resolution of inflammation and mounting evidence suggests that defective clearance of apoptotic cells contributes to inflammatory and autoimmune diseases. Defining the ligands on apoptotic cells and the corresponding receptors on phagocytes with which they engage, is likely to lead to the development of novel anti-inflammatory pro-resolution drugs. In this article, we will review the recognition and signaling mechanisms involved in the phagocytosis of apoptotic cells as well as the role of endogenous compounds that play a relevant role in the modulation of inflammation. We will also discuss what is currently known about diseases that may reflect impaired phagocytosis and the consequences on inflammation and immune responses.  相似文献   

3.
Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive. We provide evidence that peroxisome proliferator-activated receptor gamma (PPARgamma) coordinates antiinflammatory responses following its activation by AC. Exposing murine RAW264.7 macrophages to AC before LPS stimulation reduced NF-kappaB transactivation and lowered target gene expression of, that is, TNF-alpha and IL-6 compared with controls. In macrophages overexpressing a dominant negative mutant of PPARgamma, NF-kappaB transactivation in response to LPS was restored, while macrophages from myeloid lineage-specific conditional PPARgamma knockout mice proved that PPARgamma transmitted an antiinflammatory response, which was delivered by AC. Expressing a PPARgamma-Delta aa32-250 deletion mutant, we observed no inhibition of NF-kappaB. Analyzing the PPARgamma domain structures within aa 32-250, we anticipated PPARgamma sumoylation in mediating the antiinflammatory effect in response to AC. Interfering with sumoylation of PPARgamma by mutating the predicted sumoylation site (K77R), or knockdown of the small ubiquitin-like modifier (SUMO) E3 ligase PIAS1 (protein inhibitor of activated STAT1), eliminated the ability of AC to suppress NF-kappaB. Chromatin immunoprecipitation analysis demonstrated that AC prevented the LPS-induced removal of nuclear receptor corepressor (NCoR) from the kappaB site within the TNF-alpha promoter. We conclude that AC induce PPARgamma sumoylation to attenuate the removal of NCoR, thereby blocking transactivation of NF-kappaB. This contributes to an antiinflammatory phenotype shift in macrophages responding to AC by lowering proinflammatory cytokine production.  相似文献   

4.
Rapid apoptotic cell engulfment is crucial for prevention of inflammation and autoimmune diseases and is conducted by special immunocompetent cells like macrophages or immature dendritic cells. We recently demonstrated that endothelial cells (ECs) also participate in apoptotic cell clearance. However, in contrast to conventional phagocytes they respond with an inflammatory phenotype. To further confirm these pro‐inflammatory responses human ECs were exposed to apoptotic murine ECs and changes in thrombospondin‐1 (TSP‐1) expression and in activation of intracellular signalling cascades were determined by real‐time qPCR, immunoblotting and immunocytochemistry. Human primary macrophages or monocytic lymphoma cells (U937) were incubated with conditioned supernatant of human ECs exposed to apoptotic cells and changes in activation, migration and phagocytosis were monitored. Finally, plasma levels of TSP‐1 in patients with anti‐neutrophil cytoplasmic antibody(ANCA)‐associated vasculitis (AAV) were determined by ELISA. We provided evidence that apoptotic cells induce enhanced expression of TSP‐1 in human ECs and that this increase in TSP‐1 is mediated by the mitogen‐activated protein kinases (MAPK) ERK1 and 2 and their upstream regulators MEK and B‐Raf. We also showed that plasma TSP‐1 levels are increased in patients with AAV. Finally, we showed that conditioned supernatant of ECs exposed to apoptotic cells induces pro‐inflammatory responses in monocytes or U937 cells and demonstrated that increased TSP‐1 expression enhances migration and facilitates engulfment of apoptotic cells by monocyte‐derived macrophages or U937 cells. These findings suggest that under pathological conditions with high numbers of uncleared dying cells in the circulation endothelial‐derived elevated TSP‐1 level may serve as an attraction signal for phagocytes promoting enhanced recognition and clearance of apoptotic cells.  相似文献   

5.
Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success.  相似文献   

6.
In the central nervous system (CNS), apoptosis plays an important role during development and is a primary pathogenic mechanism in several adult neurodegenerative diseases. A main feature of apoptotic cell death is the efficient and fast removal of dying cells by macrophages and nonprofessional phagocytes, without eliciting inflammation in the surrounding tissue. Apoptotic cells undergo several membrane changes, including the externalization of so-called "eat me" signals whose cognate receptors are present on professional phagocytes. Among these signals, the aminophospholipid phosphatidylserine (PS) appears to have a crucial and unique role in preventing the classical pro-inflammatory activation of macrophages, thus ensuring the silent and safe removal of apoptotic cells. Although extensively studied in the peripheral organs, the process of recognition and removal of apoptotic cells in the brain has only recently begun to be unraveled. Here, we summarize the evidence suggesting that upon interaction with PS-expressing apoptotic neurons, microglia may no longer promote the inflammatory cascade, but rather facilitate the elimination of damaged neurons through antiinflammatory and neuroprotective functions. We propose that the anti-inflammatory microglial phenotype induced through the activation of the specific PS receptor (PtdSerR), expressed by resting and activated microglial cells, could be relevant to the final outcome of neurodegenerative diseases, in which apoptosis seems to play a crucial role.  相似文献   

7.
We described the use of a new chemical substance Sodium nucleinate (SN) as an immunomodulatory substance exhibiting antiinflammatory properties. Sodium nucleinate (SN) registrated in Russian Federation as Tamerit, is 2-amino-1,2,3,4-tetrahydrophthalazine-1,4-dione sodium salt dihydrate, derivative of well known chemical substance luminol. To comprehend the mechanisms of SN immunomodulatory activity, we examined the SN modulation of the oxidative burst responses of whole blood human monocytes and polimorphonuclear cells (PMC) stimulated with phorbol 12-myristate 13-acetate (PMA) or E. coli suspension in vitro. SN did not inhibit the proportion of neutrophils and monocytes phagocytosing E. coli. Oxidative burst responses of monocytes stimulated with PMA were strongly inhibited at SN concentration ranging from 10-500 mg/ml, less efficient inhibitor was SN in E. coli stimulated monocytes (inhibition range was from 50-500 mg/ml SN). SN inhibited PMC oxidative burst only in range 100-500 mg/ml SN. In conclusion, we found SN as an efficient inhibitor of oxidative burst in monocytes. Since ROS generation in monocytes/macrophages has been found to be important for LPS-driven production of several proinflammatory cytokines, SN may exsert its antiinflammatory effects through monocyte/macrophage oxidative burst inhibition.  相似文献   

8.
Mitochondrial oxidative burst involved in apoptotic response in oats   总被引:10,自引:0,他引:10  
Apoptotic cell response in oats is induced by victorin, a host-selective toxin secreted by Cochliobolus victoriae and thought to exert toxicity by inhibiting mitochondrial glycine decarboxylase (GDC) in Pc-2/Vb oats. We examined the role of mitochondria, especially the organelle-derived production of reactive oxygen species (ROS), in the induction of apoptotic cell death. Cytofluorimetric analysis showed that victorin caused mitochondrial deltaPsim breakdown and mitochondrial oxidative burst. Ultrastructural analysis using a cytochemical assay based on the reaction of H2O2 with CeCl3 detected H2O2 eruption at permeability transition pore-like sites on the mitochondrial membrane in oat cells treated with victorin. ROS generation preceded the apoptotic cell responses seen in chromatin condensation and DNA laddering. Both aminoacetonitrile (a specific GDC inhibitor) and antimycin A (a mitochondrial complex III inhibitor) also induced mitochondrial H2O2 eruption, and led to the apoptotic response in oat cells. ROS scavengers such as N-acetyl-l-cysteine and catalase suppressed the mitochondrial oxidative burst and delayed chromatin condensation and DNA laddering in the victorin- or antimycin A-treated leaves. These findings indicate possible involvement of mitochondria, especially mitochondrial-derived ROS generation, as an important regulator in controlling apoptotic cell death in oats.  相似文献   

9.
This study was undertaken to determine the role of secreted frizzled‐related protein 5 (SFRP5) in endothelial oxidative injury. Human aortic endothelial cells (HAECs) were exposed to different oxidative stimuli and examined for SFRP5 expression. The effects of SFRP5 overexpression and knockdown on cell viability, apoptosis, and reactive oxygen species production were measured. HAECs treated with angiotensin (Ang) II (1 μM) or oxidized low‐density lipoprotein (oxLDL) (150 μg/mL) showed a significant increase in SFRP5 expression. Overexpression of SFRP5 significantly attenuated the viability suppression and apoptosis induction by Ang II and oxLDL, whereas the knockdown of SFRP5 exerted opposite effects. Overexpression of SFRP5 prevented ROS formation and β‐catenin activation and reduced Bax expression. Co‐expression of Bax significantly reversed the anti‐apoptotic effect of SFRP5 overexpression, whereas knockdown of Bax restrained Ang II‐ and oxLDL‐induced apoptosis in HAECs. Taken together, SFRP5 confers protection against oxidative stress‐induced apoptosis through inhibition of β‐catenin activation and downregulation of Bax.  相似文献   

10.
Phagocytosis of complement-opsonized targets is a primary function of neutrophils at sites of inflammation, and the clearance of neutrophils that have phagocytosed microbes is important for the resolution of inflammation. Our previous work suggests that phagocytosis leads to rapid neutrophil apoptosis that is inhibited by antibody to the beta2 integrin, Mac-1, and requires NADPH oxidase-derived reactive oxygen species (ROS) generated during phagocytosis. Here we report that phagocytosis-induced cell death (PICD) does not occur in Mac-1-deficient murine neutrophils, suggesting that PICD proceeds through a bona fide Mac-1-dependent pathway. A sustained, intracellular oxidative burst is associated with PICD. Furthermore, PICD does not require traditional death receptors, Fas, or tumor necrosis factor (TNF) receptor. TNF but not Fas synergizes with phagocytosis to enhance significantly PICD by increasing the oxidative burst, and this is Mac-1-dependent. Phagocytosis-induced ROS promote cleavage/activation of caspases 8 and 3, key players in most extrinsic ("death receptor") mediated pathways of apoptosis, and caspases 8 and 3 but not caspase 9/mitochondria, are required for PICD. This suggests that ROS target the extrinsic versus the intrinsic ("stress stimulus") apoptotic pathway. Phagocytosis also triggers a competing MAPK/ERK-dependent survival pathway that provides resistance to PICD likely by down-regulating caspase 8 activation. The anti-apoptotic factor granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly enhances ROS generation associated with phagocytosis. Despite this, it completely suppresses PICD by sustaining ERK activation and inhibiting caspase 8 activation in phagocytosing neutrophils. Together, these studies suggest that Mac-1-mediated phagocytosis promotes apoptosis through a caspase 8/3-dependent pathway that is modulated by NADPH oxidase-generated ROS and MAPK/ERK. Moreover, TNF and GM-CSF, likely encountered by phagocytosing neutrophils at inflammatory sites, exploit pro-(ROS) and anti-apoptotic (ERK) signals triggered by phagocytosis to promote or suppress PICD, respectively, and thus modulate the fate of phagocytosing neutrophils.  相似文献   

11.
Cells that undergo apoptosis or necrosis are promptly removed by phagocytes. Soluble opsonins such as complement can opsonize dying cells, thereby promoting their removal by phagocytes and modulating the immune response. The pivotal role of the complement system in the handling of dying cells has been demonstrated for the classical pathway (via C1q) and lectin pathway (via mannose-binding lectin and ficolin). Herein we report that the only known naturally occurring positive regulator of complement, properdin, binds predominantly to late apoptotic and necrotic cells, but not to early apoptotic cells. This binding occurs independently of C3b, which is additional to the standard model wherein properdin binds to preexisting clusters of C3b on targets and stabilizes the convertase C3bBb. By binding to late apoptotic or necrotic cells, properdin serves as a focal point for local amplification of alternative pathway complement activation. Furthermore, properdin exhibits a strong interaction with DNA that is exposed on the late stage of dying cells. Our data indicate that direct recognition of dying cells by properdin is essential to drive alternative pathway complement activation.  相似文献   

12.
13.
Macrophage interactions with apoptotic cells can suppress inflammatory responses, but cell death by apoptosis may also trigger inflammation. We now report that murine macrophages exposed to the combination of apoptotic cells and archetypal ligands for Toll-like receptors (TLRs) 2, 4, and 9 mount cytokine responses that differ importantly from those elicited by either class of stimulus alone. TLR ligands induced early and sustained secretion of TNF-alpha, macrophage-inflammatory protein (MIP) 1alpha and MIP-2 with later secretion of IL-10, IL-12, and TGF-beta1; apoptotic cells alone stimulated late TGF-beta1 secretion only. The combination of apoptotic cells and TLR ligands enhanced early secretion of TNF-alpha, MIP-1alpha, and MIP-2 and increased late TGF-beta1 secretion, while suppressing late TNF-alpha, IL-10, and Il-12 by mechanisms which could nevertheless be overridden by IFN-gamma. We propose that this combinatorial macrophage cytokine response to apoptotic cells and TLR ligands may contribute to recruitment and activation of innate immune defense when cell death occurs at infected inflamed sites while promoting later resolution with diminished engagement of adaptive immunity.  相似文献   

14.
AimsSerotonin (5-HT) is capable of reducing the oxidative burst of professional phagocytes. In this study, we investigated whether 5-HT mediates this modulation via 5-HT receptors (5-HTR) or whether this is due instead to 5-HT antioxidative properties.Main methodsThe leukocytes or polymorphonuclear leukocytes (PMNL) were isolated from human blood, and their ability to produce reactive oxygen species (ROS) after 5-HT or its agonist treatment was tested by luminol-enhanced chemiluminescence (CL) analysis.Key findingsIt was found that 5-HTR2 agonist DOI hydrochloride does not have any antioxidative properties, despite its ability to inhibit the CL response of activated human total leukocytes. On the other hand, DOI hydrochloride was unable to inhibit the CL response of activated human PMNL. It seems that the reduction of the oxidative burst of professional phagocytes was evoked by the activation of 5-HTR not on the neutrophil surface but on the surface of different leukocytes, which produced anti-inflammatory cytokines with NADPH oxidase activity modulating properties.SignificancePlatelets and activated PMNL are in tight contact at sites of inflammation. 5-HT released from platelets might have a protective function against PMNL-derived oxidative stress and oxidative damages.  相似文献   

15.
Milk fat globule-EGF-factor 8-L (MFG-E8L) is secreted by activated macrophages and functions as a linker protein or opsonin between the dying cells and phagocytes. MFG-E8L recognizes the apoptotic or dying cells by specifically binding to Phosphatidylserine (PS) exposed on the outer cell surface and enhances the engulfment of the apoptotic cells by phagocytes, thereby preventing the inflammation and autoimmune response against intracellular antigens that can be released from the dying cells. MFG-E8L contains two EGF-like domains, P/T (proline/threonine) rich domain followed by two discoidin-like domains (C1 and C2). Recent studies have shown that the C2 domain of MFG-E8L is specifically involved in interaction with PS exposed on the apoptotic cells. Towards understanding this specific molecular interaction between the MFG-E8L C2 domain and PS, we expressed, purified the C2 domain of MFG-E8L and performed the binding studies with phospholipids by (31)P NMR experiment. We demonstrated that our recombinant construct and expression system were effective and allowed us to obtain the C2 domain and also showed that the purified C2 domain was stable and properly folded, and our (31)P NMR studies indicated that the C2 domain had specific binding with PS.  相似文献   

16.
Honokiol, a compound extracted from Chinese medicinal herb Magnolia officinalis, has several biological effects. However, its protective effects against endothelial injury remain unclarified. In this study, we examined whether honokiol prevented oxidized low-density lipoprotein (oxLDL)-induced vascular endothelial dysfunction. Incubation of oxLDL with honokiol (2.5-20 microM) inhibited copper-induced oxidative modification as demonstrated by diene formation, thiobarbituric acid reactive substances (TBARS) assay and electrophoretic mobility assay. Expression of adhesion molecules (ICAM, VCAM and E-selectin) and endothelial NO synthase (eNOS) affected by oxLDL was investigated by flow cytometry and Western blot. We also measured the production of reactive oxygen species (ROS) using the fluorescent probe 2',7'-dichlorofluorescein acetoxymethyl ester (DCF-AM). Furthermore, several apoptotic phenomena including increased cytosolic calcium, alteration of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 were also investigated. Apoptotic cell death was characterized by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) stain. The results showed that honokiol prevented the copper-induced oxidative modification of LDL. Honokiol also ameliorated the oxLDL-diminished eNOS protein expression and reduced the oxLDL-induced adhesion molecules and the adherence of THP-1 cells to HUVECs. Furthermore, honokiol attenuated the oxLDL-induced cytotoxicity, apoptotic features, ROS generation, intracellular calcium accumulation and the subsequent mitochondrial membrane potential collapse, cytochrome c release and activation of caspase-3. Our results suggest that honokiol may have clinical implications in the prevention of atherosclerotic vascular disease.  相似文献   

17.
Induction of reactive oxygen species (ROS) was observed within seconds of the addition of exogenous tobacco mosaic virus (TMV) to the outside of tobacco (Nicotiana tabacum cv Samsun NN, EN, or nn) epidermal cells. Cell death was correlated with ROS production. Infectivity of the TMV virus was not a prerequisite for this elicitation and isolated coat protein (CP) subunits could also elicit the fast oxidative burst. The rapid induction of ROS was prevented by both inhibitors of plant signal transduction and inhibitors of NAD(P)H oxidases, suggesting activation of a multi-step signal transduction pathway. Induction of intracellular ROS by TMV was detected in TMV-resistant and -susceptible tobacco cultivars isogenic for the N allele. The burst was also detected with strains of virus that either elicit (ToMV) or fail to elicit (TMV U1) N' gene-mediated responses. Hence, early ROS generation is independent or upstream of known genetic systems in tobacco that can mediate hypersensitive responses. Analysis of other viruses and TMV CP mutants showed marked differences in their ability to induce ROS showing specificity of the response. Thus, initial TMV-plant cell interactions that lead to early ROS induction occur outside the plasma membrane in an event requiring specific CP epitopes.  相似文献   

18.
Components of current vaccines for Hansen's disease include Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and killed Mycobacterium leprae. BCG infections in humans are rare and most often occur in immune-compromised individuals. M. leprae on the other hand, although not causing clinical disease in most exposed individuals, is capable of infecting and replicating within mononuclear phagocytes. Lymphocytes from patients with the lepromatous form of Hansen's disease exhibit defective lymphokine production when challenged in vitro with M. leprae. This may result in inefficient mononuclear phagocyte activation for oxidative killing. To study the ability of normal phagocytes to ingest and respond oxidatively to BCG and M. leprae, we measured phagocytic cell O2- release and fluorescent oxidative product formation and visually confirmed the ingestion of the organisms. BCG stimulated a vigorous O2- generation in neutrophils and monocytes and flow cytometric oxidative product generation by neutrophils occurred in the majority of cells. M. leprae, stimulated a weak but significant O2- release requiring a high concentration of organisms and long exposure. By flow cytometric analysis, most neutrophils were able to respond to both organisms with the generation of fluorescent oxidative products. Neutrophil oxidative responses to M. leprae were substantially less than responses seen from neutrophils exposed to BCG. By microscopic examination of neutrophils phagocytizing FITC-labeled bacteria, it was shown that both M. leprae and BCG were slowly ingested but that more BCG appeared to be associated with the cell membrane of more of the cells. When phagocytic cells were incubated with BCG and M. leprae for 30 min and subsequently examined by electron microscopy, few organisms were seen in either neutrophils or monocytes. This suggests that BCG are easily recognized and slowly ingested by normal phagocytic cells, the majority of which respond with a strong oxidative burst. M. leprae appeared to only weakly stimulate phagocyte oxidative responses and were also slowly phagocytized.  相似文献   

19.
Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism.Within 3 h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death.  相似文献   

20.
Pulmonary exposure to metals and metal-containing compounds is associated with pulmonary inflammation, cell death, and tissue injury. The present study uses a mouse model to investigate vanadium-induced apoptosis and lung inflammation, and the role of reactive oxygen species (ROS) in this process. Aspiration of the pentavalent form of vanadium, V (V), caused a rapid influx of polymorphonuclear leukocytes into the pulmonary airspace with a peak inflammatory response at 6 h post-exposure and resolution by 72 h. During this period, the number of apoptotic lung cells which were predominantly neutrophils increased considerably with a peak response at 24 h accompanied by no or minimum necrosis. After 24 h when the V (V)-induced inflammation was in the resolution phase, an increased influx of macrophages and engulfment of apoptotic bodies by these phagocytes was observed, supporting the role of macrophages in apoptotic cell clearance and resolution of V (V)-induced lung inflammation. Electron spin resonance (ESR) studies using lavaged alveolar macrophages showed the formation of ROS, including O(2)(*-), H(2)O(2), and (*)OH radicals which were confirmed by inhibition with free radical scavengers. The mechanism of ROS generation induced by V (V) involved the activation of an NADPH oxidase complex and the mitochondrial electron transport chain. The ROS scavenger, catalase (H(2)O(2) scavenger), effectively inhibited both lung cell apoptosis and the inflammatory response, whereas superoxide dismutase (SOD) (O(2)(*-) scavenger) and the metal chelator, deferoxamine (inhibitor of (*)OH generation by Fenton-like reactions) had lesser effects. These results indicate that multiple oxidative species are involved in V (V)-induced lung inflammation and apoptosis, and that H(2)O(2) plays a major role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号