首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
4.
5.
6.
Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [3H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.  相似文献   

7.
8.
Estrogen receptor alpha (ERα) typically masculinizes male behavior, while low levels of ERα in the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BST) are associated with high levels of male prosocial behavior. In the males of the highly social prairie vole (Microtus ochrogaster), increasing ERα in the MeA inhibited the expression of spontaneous alloparental behavior and produced a preference for novel females. To test for the effects of increased ERα in the BST, a viral vector was used to enhance ERα expression in the BST of adult male prairie voles. Following treatment, adult males were tested for alloparental behavior with 1–3-day-old pups, and for heterosexual social preference and affiliation. Treatment did not affect alloparental behavior as 73% of ERα-BST males and 62.5% of control males were alloparental. Increasing ERα in the BST affected heterosexual affiliation, with ERα-BST males spending significantly less total time in side-by-side contact with females relative to time spent with control males. ERα-BST males did not show a preference for either the familiar or novel female. These findings differed significantly from those reported in ERα-MeA enhanced males, where ERα inhibited alloparental behavior and produced a preference for a novel female. The findings from this study suggest two things: first, that increased ERα in the BST decreases social affiliation and second, that altering ERα in different regions of the social neural circuit differentially impacts the expression of social behavior.  相似文献   

9.
10.
11.
12.
The nuclear factor NF-κB pathway has long been considered a prototypical proinflammatory signaling pathway, largely based on the role of NF-κB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules. In this article, we describe how genetic evidence in mice has revealed complex roles for the NF-κB in inflammation that suggest both pro- and anti-inflammatory roles for this pathway. NF-κB has long been considered the “holy grail” as a target for new anti-inflammatory drugs; however, these recent studies suggest this pathway may prove a difficult target in the treatment of chronic disease. In this article, we discuss the role of NF-κB in inflammation in light of these recent studies.NF-κB has long been considered a prototypical proinflammatory signaling pathway, largely based on the activation of NF-κB by proinflammatory cytokines such as interleukin 1 (IL-1) and tumor necrosis factor α (TNFα), and the role of NF-κB in the expression of other proinflammatory genes including cytokines, chemokines, and adhesion molecules, which has been extensively reviewed elsewhere. But inflammation is a complex physiological process and the role of NF-κB in the inflammatory response cannot be extrapolated from in vitro studies. In this article, we describe how genetic evidence in mice has revealed complex roles for the NF-κB pathway in inflammation.  相似文献   

13.
14.
Previous reports indicate that the NIX/BNIP3L gene acts as a pro-apoptotic factor by interacting with BCL2 and BCL-XL, playing an important role in hypoxia-dependent cell death and acting as a tumor suppressor. However, many studies also showed that NIX is linked to a protective role and cell survival in cancer cells. Nuclear factor-κB (NF-κB) can attenuate apoptosis in human cancers in response to chemotherapeutic agents and ionizing radiation. We observed an absence of i-κBα (NF-κB activation inhibitor) expression, but a greater expression of Nix and p-NF-κB proteins in the Nix-wt U251 cells, which was not observed in the Nix-kn cells under hypoxic conditions. Using electrophoretic mobility shift assay (EMSA) and luciferase detection, the activation of NF-κB was detected only in the Nix-wt U251 cells with hypoxia. These data imply that Nix protein might play a role in the positive regulation of the NF-κB pathway. Moreover, 46 cases of glioma also showed high levels of Nix protein expression, which was always accompanied by high p-NF-κB expression. Patients with Nix (+) showed less tissue apoptosis behavior in glioblastoma (GBM), unlike that observed in the Nix-negative patients (−). The same apoptotic tendency was also identified in anaplastic astrocytoma (AA) groups, but not in astrocytoma (AS). On analyzing the Kaplan-Meier curve, better tumor-free survival was observed only in cases of astrocytoma, and not in AA and GBM. Thus, our study indicates that Nix protein might have multiple functions in regulating glioma behaviors. In the low-grade gliomas (astrocytoma) with low expression of NF-κB, the cell death-inducing function that occurs through a Bax mechanism might predominate and act as a tumor suppressor. While in the malignant gliomas (AA and GBM), with higher expression of the NIX gene and with activity of the NF-κB pathway, the oncogene function of Nix was predominant.  相似文献   

15.
16.
17.
18.
19.
20.
MEKK3 serves as a critical intermediate signaling molecule in lysophosphatidic acid-mediated nuclear factor-κB (NF-κB) activation. However, the precise regulation for MEKK3 activation at the molecular level is still not fully understood. Here we report the identification of two regulatory phosphorylation sites at Thr-516 and Ser-520 within the kinase activation loop that is essential for MEKK3-mediated IκB kinase β (IKKβ)/NF-κB activation. Substitution of these two residues with alanine abolished the ability of MEKK3 to activate IKKβ/NF-κB, whereas replacement with acidic residues rendered MEKK3 constitutively active. Furthermore, substitution of these two residues with alanine abolished the ability of MEKK3 to mediate lysophosphatidic acid-induced optimal IKKβ/NF-κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号