首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fibronectin plays important roles in erythropoiesis through the fibronectin receptors VLA-4 and VLA-5. However, the substantial role of these fibronectin receptors and their functional assignment in erythroid differentiation are not yet fully understood. Here, we investigated the effects of cell adhesion to fibronectin on erythroid differentiation using K562 human erythroid progenitor cells. Erythroid differentiation could be induced in K562 cells in suspension by stimulating with hemin. This hemin-stimulated erythroid differentiation was highly accelerated when cells were induced to adhere to fibronectin by treatment with TNIIIA2, a peptide derived from tenascin-C, which has recently been found to induce β1-integrin activation. Another integrin activator, Mn2+, also accelerated hemin-stimulated erythroid differentiation. Adhesive interaction with fibronectin via VLA-4 as well as VLA-5 was responsible for acceleration of the hemin-stimulated erythroid differentiation in response to TNIIIA2, although K562 cells should have been lacking in VLA-4. Adhesion to fibronectin forced by TNIIIA2 causally induced VLA-4 expression in K562 cells, and this was blocked by the RGD peptide, an antagonist for VLA-5. The resulting adhesive interaction with fibronectin via VLA-4 strongly enhanced the hemin-stimulated activation of p38 mitogen-activated protein kinase, which was shown to serve as a signaling molecule crucial for erythroid differentiation. Suppression of VLA-4 expression by RNA interference abrogated acceleration of hemin-stimulated erythroid differentiation in response to TNIIIA2. Thus, VLA-4 and VLA-5 may contribute to erythropoiesis at different stages of erythroid differentiation.Hematopoietic stem and progenitor cells proliferate and differentiate in the bone marrow and fetal liver (16). Stromal cells of the bone marrow and fetal liver form a hematopoietic microenvironment called a “niche.” This microenvironment niche plays a crucial role in the regulation of the proliferation and differentiation of hematopoietic stem and progenitor cells. Besides humoral factors that include hematopoietic growth factors, adhesive interaction of hematopoietic stem and progenitor cells with stromal cells and/or the extracellular matrix (ECM)2 in the hematopoietic microenvironment is indispensable for hematopoietic development (16). The ECM in the hematopoietic microenvironment is composed of various macromolecules, such as fibronectin (FN), collagens, laminins, and proteoglycans. Among them, FN is one of the most important parts of the microenvironment niche (711). Also, in erythropoiesis, the importance of the adhesion of erythroid progenitors to FN via the FN receptors VLA-4 and VLA-5 has been reported (1116). However, the substantial role of these FN receptors and their functional assignment in erythroid differentiation are not yet fully understood.We previously found that FN, which provides scaffolding for the adhesion of various cell types, has an alternative functional site opposing cell adhesion (17). A 22-mer peptide derived from the 14th FN type III-like (FNIII) repeat of the FN molecule, termed FNIII14, strongly suppresses cell adhesion to FN by inhibiting the activation of β1-integrins including VLA-4 and VLA-5 (18, 19). Conversely, we have recently found that tenascin (TN)-C, which is an anti-adhesive ECM protein (20, 21), has a functional site for stimulating cell adhesion to FN (22). A 22-mer peptide derived from the FNIII repeat A2 in the TN-C molecule, termed TNIIIA2, can induce the conformational change necessary for functional activation of FN receptors through binding with syndecan-4 (22, 23). The active sites of FNIII14 and TNIIIA2 appear to be cryptic in the molecular structures of FN and TN-C but are exposed by conformational change through interaction with other ECM molecules or by processing with matrix metalloproteinase-2 (22, 24). Thus, these functional sites found in FN and TN-C molecules, which act in opposition to their parental ECM proteins, may act as a negative feedback loop for preventing excessive cellular responses to these ECM proteins in biological processes with ECM rearrangement. In any case, FNIII14 and TNIIIA2 enable us to control, either negatively or positively, the adhesion of various cell types to FN.Various hematopoietic progenitor cell lines have been used in in vitro studies of hematopoietic differentiation. However, most hematopoietic progenitor cell lines are nonadherent, because their cell surface β1-integrins, including FN receptors, have impaired ligand-binding activity (25, 26). Therefore, in order to investigate the role of cell adhesion to FN in hematopoietic differentiation, their FN receptors must be activated. Since TNIIIA2 can induce activation of FN receptors in various hematopoietic progenitor cell lines (22), this peptide factor may be useful for investigating the substantial role of cell adhesion to FN in hematopoietic differentiation. Here, we investigate the effects of cell adhesion to FN on erythroid differentiation using TNIIIA2 and Mn2+ as the integrin activator and the human erythroid progenitor cell line K562, which only expresses VLA-5, as the FN receptor (27). As a result, we show that hemin-stimulated erythroid differentiation of K562 cells is strongly enhanced when K562 cells are forced to adhere to FN. Sustained adhesion to FN via VLA-5, which is induced by TNIIIA2 or Mn2+, causes induction of VLA-4 expression. The resulting adhesive interaction with FN via newly expressed VLA-4 then generates a conspicuous increase in the hemin-stimulated phosphorylation/activation of p38 MAP kinase, which is shown to serve as a signaling molecule crucial for erythroid differentiation of K562 cells.  相似文献   

2.
Fibronectin (FN) is a large extracellular matrix glycoprotein important for development and wound healing in vertebrates. Recent work has focused on the ability of FN fragments and embryonic or tumorigenic splicing variants to stimulate fibroblast migration into collagen gels. This activity has been localized to specific sites and is not exhibited by full-length FN. Here we show that an N-terminal FN fragment, spanning the migration stimulation sites and including the first three type III FN domains, also lacks this activity. A screen for interdomain interactions by solution-state NMR spectroscopy revealed specific contacts between the Fn N terminus and two of the type III domains. A single amino acid substitution, R222A, disrupts the strongest interaction, between domains 4–5FnI and 3FnIII, and restores motogenic activity to the FN N-terminal fragment. Anastellin, which promotes fibril formation, destabilizes 3FnIII and disrupts the observed 4–5FnI-3FnIII interaction. We discuss these findings in the context of the control of cellular activity through exposure of masked sites.Fibronectin (FN),4 a large multidomain glycoprotein found in all vertebrates, plays a vital role in cell adhesion, tissue development, and wound healing (1). It exists in soluble form in plasma and tissue fluids but is also present in fibrillar networks as part of the extracellular matrix. The structures of many FN domains of all three types, FnI, FnII, and FnIII, are known, for example (24). Although interactions between domains that are close in primary sequence have been demonstrated (3, 5), studies of multidomain fragments generally assume a beads-on-string model (2). There is, however, much evidence for the presence of long range order in soluble FN as a number of functional sites, termed cryptic, are not active in the native molecule, until exposed through conformational change. These include self-association sites (58), sites of protein interactions (9), and sites that control cellular activity (10, 11). Low resolution studies of the FN dimer suggest a compact conformation under physiological conditions (1214); however, attempts to define large scale structure in FN by small angle scattering or electric birefringence (1517) have yielded contradictory results. Interpretation of domain stability changes in terms of interaction sites (18) has also not been straightforward (2), possibly because of domain stabilization through nearest-neighbor effects (19, 20).A FN splicing variant produced in fetal and cancer patient fibroblasts, termed migration stimulation factor (MSF), stimulates migration of adult skin fibroblasts into type I collagen gels (10, 21) and breast carcinoma cells using the Boyden chamber (22). MSF comprises FN domains 1FnI to 9FnI, a truncated 1FnIII, and a small C-terminal extension; a recombinant FN fragment corresponding to 1FnI-9FnI (Fn70kDa) displays the same activity (10). An overview of FN domain structure and nomenclature is presented in Fig. 1a. Further experiments sub-localized full motogenic activity to the gelatin binding domain of FN (GBD, domains 6FnI-9FnI) (23) and partial activity to a shorter fragment spanning domains 7–9FnI (24). Two IGD tripeptides of domains 7FnI and 9FnI were shown to be essential through residue substitutions and reconstitution of partial motogenic activity in synthetic peptides (10, 24, 25); however, similar IGD tripeptides outside the GBD, on domains 3FnI and 5FnI, appear to have little effect (10, 23). Full-length adult FN does not affect cell migration in similar assays (10, 23); thus motogenic activity sites are presumed to be masked in the conformation adopted by soluble FN, although they could be exposed by molecular rearrangement.Open in a separate windowFIGURE 1.Motogenic activity of FN fragments. a, schematic representation of the FN domain structure (top) and enlargement of the FN N terminus (bottom). Type I domains are shown as pentagons; type II domains as hexagons; and type III domains as ovals. b, comparison of motogenic activity versus protein concentration of wild-type Fn70kDa and Fn100kDa fragments. Error bars are derived from duplicate experiments, and a gray band denotes migration activity of media without additives. c, similar comparisons for mutant Fn100kDa fragments. d, analytical size exclusion chromatography of large FN fragments. The trace of UV absorbance at 280 nm versus elution volume shown here indicates a larger hydrodynamic radius for Fn100kDa R222A compared with the wild type, consistent with our model (Fig. 6a).Here we show that a recombinant fragment, closely matching a truncated form of FN identified in zebrafish (26), as well as amphibians, birds, and mammals (27), does not stimulate cell migration. This fragment is similar to MSF but includes the first three FnIII domains (1–3FnIII), suggesting that these domains are responsible for a conformational transition that masks the activity sites in this construct and probably in full-length FN. To identify the mechanism behind this transition, we performed structural studies by solution NMR spectroscopy and identified a specific long range interaction between domains 4–5FnI and 3FnIII as essential for this masking effect. Interestingly, this interaction does not involve direct contacts with the GBD but possibly represses motogenic activity through chain compaction, evident in analytical size exclusion assays. Intramolecular interactions thus provide a mechanism by which conformational rearrangement induced, for example, by tension or splicing variation can result in cellular activity differences.  相似文献   

3.
4.
Cross-talk of BMP and Wnt signaling pathways has been implicated in many aspects of biological events during embryogenesis and in adulthood. A secreted protein Wise and its orthologs (Sostdc1, USAG-1, and Ectodin) have been shown to modulate Wnt signaling and also inhibit BMP signals. Modulation of Wnt signaling activity by Wise is brought about by an interaction with the Wnt co-receptor LRP6, whereas BMP inhibition is by binding to BMP ligands. Here we have investigated the mode of action of Wise on Wnt and BMP signals. It was found that Wise binds LRP6 through one of three loops formed by the cystine knot. The Wise deletion construct lacking the LRP6-interacting loop domain nevertheless binds BMP4 and inhibits BMP signals. Moreover, BMP4 does not interfere with Wise-LRP6 binding, suggesting separate domains for the physical interaction. Functional assays also show that the ability of Wise to block Wnt1 activity through LRP6 is not impeded by BMP4. In contrast, the ability of Wise to inhibit BMP4 is prevented by additional LRP6, implying a preference of Wise in binding LRP6 over BMP4. In addition to the interaction of Wise with BMP4 and LRP6, the molecular characteristics of Wise, such as glycosylation and association with heparan sulfate proteoglycans on the cell surface, are suggested. This study helps to understand the multiple functions of Wise at the molecular level and suggests a possible role for Wise in balancing Wnt and BMP signals.Wise is a secreted protein that was isolated from a functional screen of a chick cDNA library of embryonic tissues. It was identified as being able to alter the antero-posterior character of neuralized Xenopus animal caps by promoting activity of the Wnt pathway (1). Independently, the homologous protein was isolated from a functional screen to detect genes that are preferentially expressed in the rat endometrium, which had been maximally sensitized to implantation, and named USAG-1 (uterine sensitization-associated gene-1) (2). The protein was identified a third time from the GenBankTM sequence data base of mouse as a putative secreted protein, shown to be a BMP antagonist, and named Ectodin (3). The gene has also been called Sostdc1 (Sclerostin domain-containing 1) or Sostl (Sclerostin-like) due to the homology with Sclerostin-encoding gene Sost (4, 5). USAG-1/Wise/Ectodin/Sostdc1 is expressed in various tissues, such as the surface ectoderm of the posterior axis (1, 6), branchial arches (3, 6), the dermal papilla in hair follicles (7), vibrissae (3), mammalian tooth cusps (3, 8), rat endometrium (2), developing testis (911), interdigital tissues (12), and embryonic and adult kidneys (13, 14).Wise appears to have a dual role in modulating the Wnt pathway. Injection of Wnt8 RNA into a ventral vegetal blastomere of Xenopus embryos at the four-cell stage induces a full secondary axis to form, and this is blocked by the addition of Wise RNA as well as other Wnt inhibitors (1). Activation of the Wnt/β-catenin pathway in hair follicles triggers regeneration of hair growth, and expression of Wise appears to have a defined role to inhibit this (15). In this context, Wise expression is repressed by the nuclear receptor co-repressor, Hairless, which results in activation of the Wnt pathway; thus, a model of periodic regeneration of hair follicles has been proposed (15, 16). In addition, Wise and its homologue USAG-1 have been shown to block Wnt1, Wnt3a, and Wnt10b activities in reporter assays (14, 15, 17). Wise was found to bind to the Wnt co-receptor, LRP6, sharing the binding domain with Wnt ligands. Importantly, Wise was found to compete with Wnt8 for binding to LRP6, therefore suggesting a mechanism for inhibition of the Wnt pathway whereby Wise blocks the binding of ligand and receptor (1). Wise may also be retained in the endoplasmic reticulum and inhibit the trafficking of LRP6 to the cell surface (18). Wise also binds LRP4 (19), a member of the LRP family functioning inhibitory to Wnt signals (20). It is noteworthy that Wise was isolated from a screen designed to detect the activation of the Wnt/β-catenin pathway, not inhibition. The exact mechanism of how Wise exerts such a context-dependent modulation on the Wnt pathway is yet to be clarified.Osteoblast differentiation of MC3T3-E1 cells, as measured by alkaline phosphatase activity, can be induced by a wide range of BMP molecules. In this assay, Ectodin, the mouse ortholog of Wise, was shown to inhibit differentiation induced by BMP2, -4, -6, or -7 in a dose-dependent manner (3). Similarly, Ectodin (also known as USAG-1) was also found to inhibit the bone differentiation induced by BMP2, -4, or -7 in C2C12 cells (14). Ectodin also inhibits BMP2- or BMP7-induced Msx2 expression in dissected mouse tooth buds in organ culture (3). In tooth buds, Ectodin expression is detected in the dental ectoderm and mesenchymal cells excluding from the enamel knot (3). Ectodin/USAG-1-deficient mice created by targeted-disruption show altered tooth morphology and extra teeth, indicating that Ectodin and BMP tightly control tooth development and patterning in mammals (8, 2123). Furthermore, in mouse adult kidneys, the ability of BMP7 to repair established renal injury is blocked by USAG-1 (13). All of these findings indicate that USAG-1/Wise/Ectodin has a clear antagonistic effect on BMP signaling, where it binds BMP2, -4, -6, and -7 (3, 14) and presumably prevents BMP binding to its receptors.Analysis of the sequence of Wise reveals that it has the C1XnC2XGXC3XnC4XnC5XC6 motif of a six-membered cystine knot, where C1 forms a disulfide bond with C4, C2 with C5, and C3 with C6 (for a review of the cystine knot, see Refs. 2427). This arrangement results in a globular protein with three loops, “finger 1,” “heel,” and “finger 2,” held together with an eight-membered ring of C2XGXC3C6XC5C2 (Fig. 1). BMP antagonists represent a subfamily in the cystine knot superfamily, and this is further subdivided into three subfamilies based on the size of the cystine knot. These are the CAN family (eight-membered ring), Twisted Gastrulation (nine-membered ring), and Chordin and Noggin (10-membered ring) (27). There is generally little sequence homology between family members in the heel, finger 1, and finger 2 regions, yet Wise does show a moderate homology with Sclerostin (28). Sclerostin is involved in regulating bone mass (4, 5) and also appears to antagonize both Wnt (2932) and BMP (28, 33, 34) signals. This paper aims to analyze the dual role of Wise on Wnt and BMP pathways by probing the structural features of the protein and reconciling them to physiological properties. It also aims to reveal the molecular nature of the protein in view of possible glycosylation, secretion, and association with extracellular matrix.Open in a separate windowFIGURE 1.Structure of chick Wise protein. A, stereo ribbon representation of the chick Wise three-dimensional structural model (residues 68–186). Purple, β-strands; green, loop regions. Yellow, disulfide bonds in the cystine knot plus a further disulfide (cysteines 89 and 147) linking two fingers of the structure. N- and C-terminal ends are indicated. B, schematic drawing of the full-length chick Wise structure. Arrowhead, the predicted signal sequence cleavage site for secretion; black dot, asparagine at position 47 (N47), the glycosylated site revealed in this study. Six cysteine residues forming the “cystine knot” are shown in circles, and disulfide bonds for the knot formation are shown by dotted lines. Three loops (Finger 1, Heel, and Finger 2) are indicated. The scheme also shows the deleted parts of Wise constructs ΔN, Δheel, and ΔC.  相似文献   

5.
6.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

7.
Paneth cells are a secretory epithelial lineage that release dense core granules rich in host defense peptides and proteins from the base of small intestinal crypts. Enteric α-defensins, termed cryptdins (Crps) in mice, are highly abundant in Paneth cell secretions and inherently resistant to proteolysis. Accordingly, we tested the hypothesis that enteric α-defensins of Paneth cell origin persist in a functional state in the mouse large bowel lumen. To test this idea, putative Crps purified from mouse distal colonic lumen were characterized biochemically and assayed in vitro for bactericidal peptide activities. The peptides comigrated with cryptdin control peptides in acid-urea-PAGE and SDS-PAGE, providing identification as putative Crps. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that the molecular masses of the putative α-defensins matched those of the six most abundant known Crps, as well as N-terminally truncated forms of each, and that the peptides contain six Cys residues, consistent with identities as α-defensins. N-terminal sequencing definitively revealed peptides with N termini corresponding to full-length, (des-Leu)-truncated, and (des-Leu-Arg)-truncated N termini of Crps 1–4 and 6. Crps from mouse large bowel lumen were bactericidal in the low micromolar range. Thus, Paneth cell α-defensins secreted into the small intestinal lumen persist as intact and functional forms throughout the intestinal tract, suggesting that the peptides may mediate enteric innate immunity in the colonic lumen, far from their upstream point of secretion in small intestinal crypts.Antimicrobial peptides (AMPs)2 are released by epithelial cells onto mucosal surfaces as effectors of innate immunity (15). In mammals, most AMPs derive from two major families, the cathelicidins and defensins (6). The defensins comprise the α-, β-, and θ-defensin subfamilies, which are defined by the presence of six cysteine residues paired in characteristic tridisulfide arrays (7). α-Defensins are highly abundant in two primary cell lineages: phagocytic leukocytes, primarily neutrophils, of myeloid origin and Paneth cells, which are secretory epithelial cells located at the base of the crypts of Lieberkühn in the small intestine (810). Neutrophil α-defensins are stored in azurophilic granules and contribute to non-oxidative microbial cell killing in phagolysosomes (11, 12), except in mice whose neutrophils lack defensins (13). In the small bowel, α-defensins and other host defense proteins (1418) are released apically as components of Paneth cell secretory granules in response to cholinergic stimulation and after exposure to bacterial antigens (19). Therefore, the release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confer protection against enteric infection (7, 20, 21).Under normal, homeostatic conditions, Paneth cells are not found outside the small bowel, although they may appear ectopically in response to local inflammation throughout the gastrointestinal tract (22, 23). Paneth cell numbers increase progressively throughout the small intestine, occurring at highest numbers in the distal ileum (24). Mouse Paneth cells express numerous α-defensin isoforms, termed cryptdins (Crps) (25), that have broad spectrum antimicrobial activities (6, 26). Collectively, α-defensins constitute approximately seventy percent of the bactericidal peptide activity in mouse Paneth cell secretions (19), selectively killing bacteria by membrane-disruptive mechanisms (2730). The role of Paneth cell α-defensins in gastrointestinal mucosal immunity is evident from studies of mice transgenic for human enteric α-defensin-5, HD-5, which are immune to infection by orally administered Salmonella enterica sv. typhimurium (S. typhimurium) (31).The biosynthesis of mature, bactericidal α-defensins from their inactive precursors requires activation by lineage-specific proteolytic convertases. In mouse Paneth cells, inactive ∼8.4-kDa Crp precursors are processed intracellularly into microbicidal ∼4-kDa Crps by specific cleavage events mediated by matrix metalloproteinase-7 (MMP-7) (32, 33). MMP-7 null mice exhibit increased susceptibility to systemic S. typhimurium infection and decreased clearance of orally administered non-invasive Escherichia coli (19, 32). Although the α-defensin proregions are sensitive to proteolysis, the mature, disulfide-stabilized peptides resist digestion by their converting enzymes in vitro, whether the convertase is MMP-7 (32), trypsin (34), or neutrophil serine proteinases (35). Because α-defensins resist proteolysis in vitro, we hypothesized that Paneth cell α-defensins resist degradation and remain in a functional state in the large bowel, a complex, hostile environment containing varied proteases of both host and microbial origin.Here, we report on the isolation and characterization of a population of enteric α-defensins from the mouse colonic lumen. Full-length and N-terminally truncated Paneth cell α-defensins were identified and are abundant in the distal large bowel lumen.  相似文献   

8.
9.
10.
Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17–27HTE) as determined by ELISA (LigBCon4, KD = 0.50 μm; LigBCen7′–8, KD = 0.82 μm; LigBCen9, KD = 1.54 μm; and LigBCen12, KD = 0.73 μm). The interaction of LigBCon4 and 17–27HTE was further confirmed by steady state fluorescence spectroscopy (KD = 0.49 μm) and ITC (KD = 0.54 μm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17–27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.Pathogenic Leptospira spp. are spirochetes that cause leptospirosis, a serious infectious disease of people and animals (1, 2). Weil syndrome, the severe form of leptospiral infection, leads to multiorgan damage, including liver failure (jaundice), renal failure (nephritis), pulmonary hemorrhage, meningitis, abortion, and uveitis (3, 4). Furthermore, this disease is not only prevalent in many developing countries, it is reemerging in the United States (3). Although leptospirosis is a serious worldwide zoonotic disease, the pathogenic mechanisms of Leptospira infection remain enigmatic. Recent breakthroughs in applying genetic tools to Leptospira may facilitate studies on the molecular pathogenesis of leptospirosis (58).The attachment of pathogenic Leptospira spp. to host tissues is critical in the early phase of Leptospira infection. Leptospira spp. adhere to host tissues to overcome mechanical defense systems at tissue surfaces and to initiate colonization of specific tissues, such as the lung, kidney, and liver. Leptospira invade hosts tissues through mucous membranes or injured epidermis, coming in contact with subepithelial tissues. Here, certain bacterial outer surface proteins serve as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs)2 to mediate the binding of bacteria to different extracellular matrices (ECMs) of host cells (9). Several leptospiral MSCRAMMs have been identified (1018), and we speculate that more will be identified in the near future.Lig proteins are distributed on the outer surface of pathogenic Leptospira, and the expression of Lig protein is only found in low passage strains (14, 16, 17), probably induced by environmental cues such as osmotic or temperature changes (19). Lig proteins can bind to fibrinogen and a variety of ECMs, including fibronectin (Fn), laminin, and collagen, thereby mediating adhesion to host cells (2023). Lig proteins also constitute good vaccine candidates (2426).Elastin is a component of ECM critical to tissue elasticity and resilience and is abundant in skin, lung, blood vessels, placenta, uterus, and other tissues (2729). Tropoelastin is the soluble precursor of elastin (28). During the major phase of elastogenesis, multiple tropoelastin molecules associate through coacervation (3032). Because of the abundance of elastin or tropoelastin on the surface of host cells, several bacterial MSCRAMMs use elastin and/or tropoelastin to mediate adhesion during the infection process (3335).Because leptospiral infection is known to cause severe pulmonary hemorrhage (36, 37) and abortion (38), we hypothesize that some leptospiral MSCRAMMs may interact with elastin and/or tropoelastin in these elastin-rich tissues. This is the first report that Lig proteins of Leptospira interact with elastin and tropoelastin, and the interactions are mediated by several specific immunoglobulin-like domains of Lig proteins, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12, which bind to the 17th to 27th exons of human tropoelastin (HTE).  相似文献   

11.
12.
Clinically, amniotic membrane (AM) suppresses inflammation, scarring, and angiogenesis. AM contains abundant hyaluronan (HA) but its function in exerting these therapeutic actions remains unclear. Herein, AM was extracted sequentially with buffers A, B, and C, or separately by phosphate-buffered saline (PBS) alone. Agarose gel electrophoresis showed that high molecular weight (HMW) HA (an average of ∼3000 kDa) was predominantly extracted in isotonic Extract A (70.1 ± 6.0%) and PBS (37.7 ± 3.2%). Western blot analysis of these extracts with hyaluronidase digestion or NaOH treatment revealed that HMW HA was covalently linked with the heavy chains (HCs) of inter-α-inhibitor (IαI) via a NaOH-sensitive bond, likely transferred by the tumor necrosis factor-α stimulated gene-6 protein (TSG-6). This HC·HA complex (nHC·HA) could be purified from Extract PBS by two rounds of CsCl/guanidine HCl ultracentrifugation as well as in vitro reconstituted (rcHC·HA) by mixing HMW HA, serum IαI, and recombinant TSG-6. Consistent with previous reports, Extract PBS suppressed transforming growth factor-β1 promoter activation in corneal fibroblasts and induced mac ro phage apo pto sis. However, these effects were abolished by hyaluronidase digestion or heat treatment. More importantly, the effects were retained in the nHC·HA or rcHC·HA. These data collectively suggest that the HC·HA complex is the active component in AM responsible in part for clinically observed anti-inflammatory and anti-scarring actions.Hyaluronan (HA)4 is widely distributed in extracellular matrices, tissues, body fluids, and even in intracellular compartments (reviewed in Refs. 1 and 2). The molecular weight of HA ranges from 200 to 10,000 kDa depending on the source (3), but can also exist as smaller fragments and oligosaccharides under certain physiological or pathological conditions (1). Investigations over the last 15 years have suggested that low Mr HA can induce the gene expression of proinflammatory mediators and proangiogenesis, whereas high molecular weight (HMW) HA inhibits these processes (47).Several proteins have been shown to bind to HA (8) such as aggrecan (9), cartilage link protein (10), versican (11), CD44 (12, 13), inter-α-inhibitor (IαI) (14, 15), and tumor necrosis factor-α stimulated gene-6 protein (TSG-6) (16, 17). IαI consists of two heavy chains (HCs) (HC1 and HC2), both of which are linked through ester bonds to a chondroitin sulfate chain that is attached to the light chain, i.e. bikunin. Among all HA-binding proteins, only the HCs of IαI have been clearly demonstrated to be covalently coupled to HA (14, 18). However, TSG-6 has also been reported to form stable, possibly covalent, complexes with HA, either alone (19, 20) or when associated with HC (21).The formation of covalent bonds between HCs and HA is mediated by TSG-6 (2224) where its expression is often induced by inflammatory mediators such as tumor necrosis factor-α and interleukin-1 (25, 26). TSG-6 is also expressed in inflammatory-like processes, such as ovulation (21, 27, 28) and cervical ripening (29). TSG-6 interacts with both HA (17) and IαI (21, 24, 3033), and is essential for covalently transferring HCs on to HA (2224). The TSG-6-mediated formation of the HC·HA complex has been demonstrated to play a crucial role in female fertility in mice. The HC·HA complex is an integral part of an expanded extracellular “cumulus” matrix around the oocyte, which plays a critical role in successful ovulation and fertilization in vivo (22, 34). HC·HA complexes have also been found at sites of inflammation (3538) where its pro- or anti-inflammatory role remain arguable (39, 40).Immunostaining reveals abundant HA in the avascular stromal matrix of the AM (41, 42).5 In ophthalmology, cryopreserved AM has been widely used as a surgical graft for ocular surface reconstruction and exerts clinically observable actions to promote epithelial wound healing and to suppress inflammation, scarring, and angiogenesis (for reviews see Refs. 4345). However, it is not clear whether HA in AM forms HC·HA complex, and if so whether such an HC·HA complex exerts any of the above therapeutic actions. To address these questions, we extracted AM with buffers of increasing salt concentration. Because HMW HA was found to form the HC·HA complex and was mainly extractable by isotonic solutions, we further purified it from the isotonic AM extract and reconstituted it in vitro from three defined components, i.e. HMW HA, serum IαI, and recombinant TSG-6. Our results showed that the HC·HA complex is an active component in AM responsible for the suppression of TGF-β1 promoter activity, linkable to the scarring process noted before by AM (4648) and by the AM soluble extract (49), as well as for the promotion of macrophage death, linkable to the inflammatory process noted by AM (50) and the AM soluble extract (51).  相似文献   

13.
14.
15.
16.
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs.Sleeping sickness (African trypanosomiasis), caused by Trypanosoma brucei, and malaria, caused by Plasmodium falciparum, are significant, parasitic diseases of sub-Saharan Africa (1). Chagas'' disease (South American trypanosomiasis), caused by Trypanosoma cruzi, affects approximately, 16–18 million people in South and Central America. For all three of these protozoan diseases, resistance and toxicity to current therapies makes treatment increasingly problematic, and thus the development of new drugs is an important priority (24).T. cruzi, T. brucei, and P. falciparum produce an array of potential target enzymes implicated in pathogenesis and host cell invasion, including a number of essential and closely related papain-family cysteine proteases (5, 6). Inhibitors of cruzain and rhodesain, major cathepsin L-like papain-family cysteine proteases of T. cruzi and T. brucei rhodesiense (710) display considerable antitrypanosomal activity (11, 12), and some classes have been shown to cure T. cruzi infection in mouse models (11, 13, 14).In P. falciparum, the papain-family cysteine proteases falcipain-2 (FP-2)6 and falcipain-3 (FP-3) are known to catalyze the proteolysis of host hemoglobin, a process that is essential for the development of erythrocytic parasites (1517). Specific inhibitors, targeted to both enzymes, display antiplasmodial activity (18). However, although the abnormal phenotype of FP-2 knock-outs is “rescued” during later stages of trophozoite development (17), FP-3 has proved recalcitrant to gene knock-out (16) suggesting a critical function for this enzyme and underscoring its potential as a drug target.Sequence analyses and substrate profiling identify cruzain, rhodesain, and FP-3 as cathepsin L-like, and several studies describe classes of small molecule inhibitors that target multiple cathepsin L-like cysteine proteases, some with overlapping antiparasitic activity (1922). Among these small molecules, vinyl sulfones have been shown to be effective inhibitors of a number of papain family-like cysteine proteases (19, 2327). Vinyl sulfones have many desirable attributes, including selectivity for cysteine proteases over serine proteases, stable inactivation of the target enzyme, and relative inertness in the absence of the protease target active site (25). This class has also been shown to have desirable pharmacokinetic and safety profiles in rodents, dogs, and primates (28, 29). We have determined the crystal structures of cruzain, rhodesain, and FP-3 bound to vinyl sulfone inhibitors and performed inhibition kinetics for each enzyme. Our results highlight key areas of interaction between proteases and inhibitors. These results help validate the vinyl sulfones as a class of antiparasitic drugs and provide structural insights to facilitate the design or modification of other small molecule inhibitor scaffolds.  相似文献   

17.
A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling.Wnt/β-catenin signaling plays essential roles in development and tumorigenesis (13). Our previous work found that β-catenin is sequentially phosphorylated by CKIα4 and GSK3 (4), which creates a binding site for β-Trcp (5), leading to degradation via the ubiquitination/proteasome machinery (3). Mutations in β-catenin or APC genes that prevent β-catenin phosphorylation or ubiquitination/degradation lead ultimately to cancer (1, 2).In addition to the involvement of kinases, protein phosphatases, such as PP1, PP2A, and PP2C, are also implicated in Wnt/β-catenin regulation. PP2C and PP1 may regulate dephosphorylation of Axin and play positive roles in Wnt signaling (6, 7). PP2A is a multisubunit enzyme (810); it has been reported to play either positive or negative roles in Wnt signaling likely by targeting different components (1121). Toward the goal of understanding the mechanism of β-catenin phosphorylation, we carried out siRNA screening targeting several major phosphatases, in which we found that PP2A dephosphorylates β-catenin. This is consistent with a recent study where PP2A is shown to dephosphorylate β-catenin in a cell-free system (18).PP2A consists of a catalytic subunit (PP2Ac), a structure subunit (PR65/A), and variable regulatory B subunits (PR/B, PR/B′, PR/B″, or PR/B‴). The substrate specificity of PP2A is thought to be determined by its B subunit (9). By siRNA screening, we further identified that PR55α, a regulatory subunit of PP2A, specifically regulates β-catenin phosphorylation and degradation. Mechanistically, we found that PR55α directly interacts with β-catenin and regulates PP2A-mediated β-catenin dephosphorylation in Wnt signaling.  相似文献   

18.
The molecular chaperone Hsp27 exists as a distribution of large oligomers that are disassembled by phosphorylation at Ser-15, -78, and -82. It is controversial whether the unphosphorylated Hsp27 or the widely used triple Ser-to-Asp phospho-mimic mutant is the more active molecular chaperone in vitro. This question was investigated here by correlating chaperone activity, as measured by the aggregation of reduced insulin or α-lactalbumin, with Hsp27 self-association as monitored by analytical ultracentrifugation. Furthermore, because the phospho-mimic is generally assumed to reproduce the phosphorylated molecule, the size and chaperone activity of phosphorylated Hsp27 were compared with that of the phospho-mimic. Hsp27 was triply phosphorylated by MAPKAP-2 kinase, and phosphorylation was tracked by urea-PAGE. An increasing degree of suppression of insulin or α-lactalbumin aggregation correlated with a decreasing Hsp27 self-association, which was the least for phosphorylated Hsp27 followed by the mimic followed by the unphosphorylated protein. It was also found that Hsp27 added to pre-aggregated insulin did not reverse aggregation but did inhibit these aggregates from assembling into even larger aggregates. This chaperone activity appears to be independent of Hsp27 phosphorylation. In conclusion, the most active chaperone of insulin and α-lactalbumin was the Hsp27 (elongated) dimer, the smallest Hsp27 subunit observed under physiological conditions. Next, the Hsp27 phospho-mimic is only a partial mimic of phosphorylated Hsp27, both in self-association and in chaperone function. Finally, the efficient inhibition of insulin aggregation by Hsp27 dimer led to the proposal of two models for this chaperone activity.Oligomeric heat shock protein 27 (Hsp27)2 is a ubiquitous mammalian protein with a variety of functions in health and disease (18). These functions include ATP-independent chaperone activity in response to environmental stress, e.g. heat shock and oxidative stress, control of apoptosis, and regulation of actin cytoskeleton dynamics. Hsp27 is a member of the α-crystallin small heat shock protein family of which αB-crystallin is the archetype. These proteins are characterized by an α-crystallin domain of 80–90 residues consisting of roughly eight β-strands that form an intermolecular β-sheet interaction interface within a dimer, the basic building subunit of the oligomer (2, 4, 911).Hsp27 is in equilibrium between high molecular weight oligomers and much lower molecular weight multimers. It has been reported that unphosphorylated Hsp27 includes predominantly a distribution of high molecular species ranging in size from 12-mer to 35-mer (1219). Phosphorylation of Hsp27 at serines 15, 78, and 82 by the p38-activated MAPKAP-2 kinase (2022) or the use of the triple Ser-to-Asp phospho-mimic results in a major shift in the equilibrium toward much smaller multimers (23) and in an alteration of its function (1, 3, 6, 7, 24, 25). The size distribution of the smaller species has been reported to be between monomer and tetramer (1216, 18, 19).Small heat shock proteins, including Hsp27, behave as ATP-independent molecular chaperones during cellular heat shock. They bind partially unfolded proteins and prevent their aggregation until the proteins can be refolded by larger ATP-dependent chaperones or are digested (7, 8, 26). This function includes the up-regulation and/or phosphorylation of Hsp27.It is not entirely clear what the role of Hsp27 size and phosphorylation state plays in its heat shock function because there are conflicting results in the literature. Some in vitro studies concluded that the unphosphorylated oligomeric Hsp27 (or the murine isoform Hsp25) protects proteins against aggregation better than does the phosphorylation mimic (13, 19, 27), whereas others found no difference (16, 28, 29), and still other studies found that the mimic protects better than does the unphosphorylated wild type (27, 30, 31). In-cell studies found that phosphorylation of Hsp27 was essential for thermo-protection of actin filaments (32), and the Hsp27 phosphorylation mimic decreased inclusion body formation better than did unphosphorylated Hsp27 (33). This study was undertaken to investigate the molecular chaperone function of Hsp27 by correlating chaperone activity with Hsp27 size and by comparing fully phosphorylated Hsp27 with its phospho-mimic.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号