首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular administration of side-chain oxysterols, such as 24S-hydroxycholesterol (24S-HC), 27-hydroxycholesterol (27-HC) and 25-hydroxycholesterol (25-HC) to cells suppresses HMG-CoA reductase (Hmgcr) and CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) mRNA levels. Oxysterols are enzymatically produced in cells from cholesterol by cytochrome P450 46A1 (Cyp46A1), Cyp27A1, Cyp3A11 and cholesterol 25-hydroxylase (Ch25h). We analyzed which of these oxysterol-producing enzymes are expressed in NIH3T3 cells and found that only Cyp46A1 was expressed. When Cyp46A1 was overexpressed in NIH3T3 cells, intrinsic oxysterols increased in the order 24S-HC > 25-HC > 27-HC. We investigated the mechanism regulating the production of endogenous oxysterols in NIH3T3 cells by Cyp46A1 and found that the mRNA, relative protein levels and enzymatic activity of Cyp46A1, and the amounts of 24S-HC, 25-HC and 27-HC significantly increased under serum-starved conditions, and these increases were suppressed by FBS supplementation. The aqueous phase of FBS obtained by the Bligh & Dyer method significantly suppressed Cyp46A1 mRNA levels. Fractionation of the aqueous phase by HPLC and analysis of the inhibiting fractions by nanoLC and TripleTOF MS/MS identified insulin-like factor-II (IGF-II). Cyp46A1 mRNA levels in serum-starved NIH3T3 cells were significantly suppressed by the addition of IGFs and insulin and endogenous oxysterol levels were decreased. CYP46A1 mRNA levels in the T98G human glioblastoma cell line were also increased by serum starvation but not by FBS supplementation, and the aqueous phase did not inhibit the increase. These results suggest that mRNA levels of Cyp46A1 are regulated by factors in FBS.  相似文献   

2.
Neuroinflammation, a major hallmark of Alzheimer’s disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via ApoE-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here, we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes-expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.  相似文献   

3.
Nuclear hormone receptors have important roles in the regulation of metabolic and inflammatory pathways. The retinoid-related orphan receptor alpha (Rorα)-deficient staggerer (sg/sg) mice display several phenotypes indicative of aberrant lipid metabolism, including dyslipidemia, and increased susceptibility to atherosclerosis. In this study we demonstrate that macrophages from sg/sg mice have increased ability to accumulate lipids and accordingly exhibit larger lipid droplets (LD). We have previously shown that BMMs from sg/sg mice have significantly decreased expression of cholesterol 25-hydroxylase (Ch25h) mRNA, the enzyme that produces the oxysterol, 25-hydroxycholesterol (25HC), and now confirm this at the protein level. 25HC functions as an inverse agonist for RORα. siRNA knockdown of Ch25h in macrophages up-regulates Vldlr mRNA expression and causes increased accumulation of LDs. Treatment with physiological concentrations of 25HC in sg/sg macrophages restored lipid accumulation back to normal levels. Thus, 25HC and RORα signify a new pathway involved in the regulation of lipid homeostasis in macrophages, potentially via increased uptake of lipid which is suggested by mRNA expression changes in Vldlr and other related genes.  相似文献   

4.
CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-β-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1?/? mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1?/? mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch’s membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch’s membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1?/? mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.  相似文献   

5.
CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3β-hydroxy-5-cholesten-(25R)26-oic acid (3βHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3βHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3βHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1−/− mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3βHCA levels were maintained at basal levels in ND-fed Cyp7b1−/− mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1−/− mice developed insulin resistance (IR) with subsequent 26HC/3βHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1−/− mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3βHCA accumulation. The results suggest 26HC/3βHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3βHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.  相似文献   

6.
There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4β-hydroxycholesterol (4βOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4βOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4βOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.  相似文献   

7.
High-fat (HF) diet induces hepatic steatosis that is a risk factor for noncommunicable diseases such as obesity, type 2 diabetes and cardiovascular disease. Previously, we found that HF feeding in rats increases the excretion of fecal bile acids (BAs), specifically 12α-hydroxylated (12αOH) BAs. Although the liver is the metabolic center in our body, the association between hepatic steatosis and 12αOH BAs in HF-fed rats is unclear. Thus, we investigated extensively BA composition in HF-fed rats and evaluated the association between hepatic steatosis and 12αOH BAs. Acclimated male inbred WKAH/HkmSlc rats were divided into two groups and fed either control or HF diet for 8 weeks. Feeding HF diet increased hepatic triglyceride and total cholesterol concentrations, which correlated positively with 12αOH BAs concentrations but not with non-12αOH BAs in the feces, portal plasma and liver. Accompanied by the increase in 12αOH BAs, the rats fed HF diet showed increased fat absorption and higher mRNA expression of liver Cidea. The enhancement of 12αOH BA secretion may contribute to hepatic steatosis by the promotion of dietary fat absorption and hepatic Cidea mRNA expression. The increase in 12αOH BAs was associated with enhanced liver cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) mRNA expression. There was a significant increase in 7α-hydroxycholesterol, a precursor of BAs, in the liver of HF-fed rats. Altogether, these data suggest that the HF diet increases preferentially 12αOH BAs synthesis by utilizing the accumulated hepatic cholesterol and enhancing mRNA expression of Cyp7a1 and Cyp8b1 in the liver.  相似文献   

8.
Testicular macrophages secrete 25-hydroxycholesterol, which can be converted to testosterone by neighboring Leydig cells. The purposes of the present studies were to determine the mode of production of this oxysterol and its long-term effects on Leydig cells. Because oxysterols are produced both enzymatically and by auto-oxidation, we first determined if testicular macrophages possess cholesterol 25-hydroxylase mRNA and/or if macrophage-secreted products oxidize cholesterol extracellularly. Rat testicular macrophages had 25-hydroxylase mRNA and converted 14C-cholesterol to 14C-25-hydroxycholesterol; however, radiolabeled cholesterol was not converted to 25-hydroxycholesterol when incubated with medium previously exposed to testicular macrophages. Exposure of Leydig cells to 10 microg/ml of 25-hydroxycholesterol, a dose within the range known to result in high basal production of testosterone when tested from 1 to 6 h, completely abolished LH responsiveness after 2 days of treatment. Because 25-hydroxycholesterol is toxic to many cell types at 1-5 microg/ml, we also studied its influence on Leydig cells during 4 days in culture using a wide range of doses. Leydig cells were highly resistant to the cytotoxic effects of 25-hydroxycholesterol, with no cells dying at 10 microg/ml and only 50% of cells affected at 100 microg/ml after 2 days of treatment. Similar conditions resulted in 100% death of a control lymphocyte cell line. These results demonstrate that 1) testicular macrophages have mRNA for cholesterol 25-hydroxylase and can convert cholesterol into 25-hydroxycholesterol, 2) macrophage-conditioned medium is not capable of auto-oxidation of cholesterol, 3) Leydig cells are highly resistant to the cytotoxic influences of 25-hydroxycholesterol, and 4) long-term treatment with high doses of 25-hydroxycholesterol results in loss of LH responsiveness. These results support the concept that testicular macrophages enzymatically produce 25-hydroxycholesterol that not only is metabolized to testosterone by Leydig cells when present at putative physiological levels but also may exert inhibitory influences on Leydig cells when present for extended periods at very high concentrations that may occur under pathological conditions.  相似文献   

9.
10.

Background

Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs), however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ) and lipopolysaccharide (LPS) drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS) stimulation, and further explored the effect of odorant stimulation on macrophage function.

Methodology/Principal Findings

OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622) on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant) exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro.

Conclusions/Significance

Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1 production and the motility of macrophages. Our results suggest that ORs may mediate macrophage function by regulating MCP-1 production and cell migration.  相似文献   

11.
An excess of cholesterol and/or oxysterols induces apoptosis in macrophages, contributing to the development of advanced atherosclerotic lesions. In foam cells, these sterols are stored in esterified forms, which are hydrolyzed by two enzymes: neutral cholesterol ester hydrolase 1 (Nceh1) and hormone-sensitive lipase (Lipe). A deficiency in either enzyme leads to accelerated growth of atherosclerotic lesions in mice. However, it is poorly understood how the esterification and hydrolysis of sterols are linked to apoptosis. Remarkably, Nceh1-deficient thioglycollate-elicited peritoneal macrophages (TGEMs), but not Lipe-deficient TGEMs, were more susceptible to apoptosis induced by oxysterols, particularly 25-hydroxycholesterol (25-HC), and incubation with 25-HC caused massive accumulation of 25-HC ester in the endoplasmic reticulum (ER) due to its defective hydrolysis, thereby activating ER stress signaling such as induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). These changes were nearly reversed by inhibition of ACAT1. In conclusion, deficiency of Nceh1 augments 25-HC-induced ER stress and subsequent apoptosis in TGEMs. In addition to reducing the cholesteryl ester content of foam cells, Nceh1 may protect against the pro-apoptotic effect of oxysterols and modulate the development of atherosclerosis.  相似文献   

12.
13.
14.
15.
Immunodetection studies revealed the presence of a 20 kD cyclophilin-like protein (designated as SorgCyp20) in leaves and seeds of sorghum (Sorghum bicolor L Moench). The expression of SorgCyp20 was temporally regulated in the leaves and after attaining maximum levels at either 60 or 70 days after sowing it declined after flowering. The effect of drought stress on SorgCyp20 levels in the leaves and seeds of sorghum was stage and cultivar dependent. The drought stress-induced enhancement in SorgCyp20 levels was many times higher in the leaves (3-fold increase at 30 days after sowing) and seeds (2.5-fold increase at 9 days post anthesis) of drought tolerant cv ICSV-272 than in the drought susceptible cv SPRU-94008B. The intercultivar differences in drought stress-induced changes in SorgCyp20 expression were not related to the difference in water potential thus suggesting differential regulation of SorgCyp20 in response to stress in the two sorghum cultivars.  相似文献   

16.
It has recently been shown that extrahepatic cells can eliminate intracellular cholesterol by enzymatic conversion into 27-hydroxy-cholesterol and 3β-hydroxy-5-cholestenoic acid. Using immunohistochemical methods, we studied the presence of the enzyme responsible for these conversions, sterol 27-hydroxylase, in human carotid atherosclerotic plaques. All plaques examined were found to contain sterol 27-hydroxylase immuno-reactive cells. While some endothelial cells stained for sterol 27-hydroxylase, the majority of the immunoreactive cells co-localized with macrophages. Accumulation of sterol 27-hydroxylase-positive cells were often observed in macrophage-rich core regions of complicated lesions. High concentrations of 27-hydroxycholesterol were found in plaques, while the concentration in non-atherosclerotic human vessels was lower by two orders of magnitude. The rabbit, which is particularly sensitive to dietary cholesterol and easily develops fatty streaks, had low plasma levels of 27-hydroxycholesterol, 3 ng/ml compared to 150 ng/ml in humans. The concentration of 27-hydroxycholesterol in the atherosclerotic rabbit vessels was also lower compared to human atherosclerotic plaques. The results are consistent with our hypothesis that sterol 27-hydroxylase may be utilized by human macrophages as a defence towards a high cholesterol load. This mechanism may be less important in some other species.  相似文献   

17.
18.
Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1) in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS). TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR) 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.  相似文献   

19.
Hepatic regulatory oxysterols were analyzed to determine which oxysterols were present in livers of mice fed a cholesterol-free diet and whether repression of 3-hydroxy-3-methylglutaryl-CoA reductase following cholesterol feeding was accompanied by an increase in one or more oxysterols. Analysis of free and esterified sterols from mice fed a cholesterol-free diet resulted in the identification and quantitation of six regulatory oxysterols: 24-hydroxycholesterol, 25-hydroxycholesterol, 26-hydroxycholesterol, 7 alpha-hydroxycholesterol, 7 beta-hydroxycholesterol, and 7-ketocholesterol. Following the addition of cholesterol to the diet for 1 or 2 nights, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity declined and the levels of oxysterols, especially those of the side-chain-hydroxylated sterols, increased. Total 3-hydroxy-3-methylglutaryl-CoA reductase repressor units attributable to identified free oxysterols increased 2.5- and 6-fold after 1 and 2 nights, respectively, of cholesterol feeding. The amounts of esterified 24-, 25-, and 26-hydroxycholesterol also increased, with the increase in esterified 24-hydroxycholesterol being the greatest. The 24-hydroxycholesterol was predominantly the 24S epimer and the 26-hydroxycholesterol was predominantly the 25R epimer, indicating enzymatic catalysis of their formation. The observed correlation between increased levels of regulatory oxysterols and repression of 3-hydroxy-3-methylglutaryl-CoA reductase in cholesterol-fed mice is consistent with a hypothesis that intracellular oxysterol metabolites regulate the level of the reductase.  相似文献   

20.
Many of the beneficial and adverse effects of niacin are mediated via a G protein receptor, G protein-coupled receptor 109A/hydroxycarboxylic acid 2 receptor (GPR109A/HCA2), which is highly expressed in adipose tissue and macrophages. Here we demonstrate that immune activation increases GPR109A/HCA2 expression. Lipopolysaccharide (LPS), TNF, and interleukin (IL) 1 increase GPR109A/HCA2 expression 3- to 5-fold in adipose tissue. LPS also increased GPR109A/HCA2 mRNA levels 5.6-fold in spleen, a tissue rich in macrophages. In peritoneal macrophages and RAW cells, LPS increased GPR109A/HCA2 mRNA levels 20- to 80-fold. Zymosan, lipoteichoic acid, and polyinosine-polycytidylic acid, other Toll-like receptor activators, and TNF and IL-1 also increased GPR109A/HCA2 in macrophages. Inhibition of the myeloid differentiation factor 88 or TIR-domain-containing adaptor protein inducing IFNβ pathways both resulted in partial inhibition of LPS stimulation of GPR109A/HCA2, suggesting that LPS signals an increase in GPR109A/HCA2 expression by both pathways. Additionally, inhibition of NF-κB reduced the ability of LPS to increase GPR109A/HCA2 expression by ∼50% suggesting that both NF-κB and non-NF-κB pathways mediate the LPS effect. Finally, preventing the LPS-induced increase in GPR109A/HCA2 resulted in an increase in TG accumulation and the expression of enzymes that catalyze TG synthesis. These studies demonstrate that inflammation stimulates GPR109A/HCA2 and there are multiple intracellular signaling pathways that mediate this effect. The increase in GPR109A/HCA2 that accompanies macrophage activation inhibits the TG accumulation stimulated by macrophage activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号