首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
SLC26A7 (human)/Slc26a7 (mouse) is a recently identified chloride-base exchanger and/or chloride transporter that is expressed on the basolateral membrane of acid-secreting cells in the renal outer medullary collecting duct (OMCD) and in gastric parietal cells. Here, we show that mice with genetic deletion of Slc26a7 expression develop distal renal tubular acidosis, as manifested by metabolic acidosis and alkaline urine pH. In the kidney, basolateral Cl/HCO3 exchange activity in acid-secreting intercalated cells in the OMCD was significantly decreased in hypertonic medium (a normal milieu for the medulla) but was reduced only mildly in isotonic medium. Changing from a hypertonic to isotonic medium (relative hypotonicity) decreased the membrane abundance of Slc26a7 in kidney cells in vivo and in vitro. In the stomach, stimulated acid secretion was significantly impaired in isolated gastric mucosa and in the intact organ. We propose that SLC26A7 dysfunction should be investigated as a potential cause of unexplained distal renal tubular acidosis or decreased gastric acid secretion in humans.The collecting duct segment of the distal kidney nephron plays a major role in systemic acid base homeostasis by acid secretion and bicarbonate absorption. The acid secretion occurs via H+-ATPase and H-K-ATPase into the lumen and bicarbonate is absorbed via basolateral Cl/HCO3 exchangers (14). The tubules, which are located within the outer medullary region of the kidney collecting duct (OMCD),2 have the highest rate of acid secretion among the distal tubule segments and are therefore essential to the maintenance of acid base balance (2).The gastric parietal cell is the site of generation of acid and bicarbonate through the action of cytosolic carbonic anhydrase II (5, 6). The intracellular acid is secreted into the lumen via gastric H-K-ATPase, which works in conjunction with a chloride channel and a K+ recycling pathway (710). The intracellular bicarbonate is transported to the blood via basolateral Cl/HCO3 exchangers (1114).SLC26 (human)/Slc26 (mouse) isoforms are members of a conserved family of anion transporters that display tissue-specific patterns of expression in epithelial cells (1524). Several SLC26 members can function as chloride/bicarbonate exchangers. These include SLC26A3 (DRA), SLC26A4 (pendrin), SLC26A6 (PAT1 or CFEX), SLC26A7, and SLC26A9 (2531). SLC26A7 and SLC26A9 can also function as chloride channels (3234).SLC26A7/Slc26a7 is predominantly expressed in the kidney and stomach (28, 29). In the kidney, Slc26a7 co-localizes with AE1, a well-known Cl/HCO3 exchanger, on the basolateral membrane of (acid-secreting) A-intercalated cells in OMCD cells (29, 35, 36) (supplemental Fig. 1). In the stomach, Slc26a7 co-localizes with AE2, a major Cl/HCO3 exchanger, on the basolateral membrane of acid secreting parietal cells (28). To address the physiological function of Slc26a7 in the intact mouse, we have generated Slc26a7 ko mice. We report here that Slc26a7 ko mice exhibit distal renal tubular acidosis and impaired gastric acidification in the absence of morphological abnormalities in kidney or stomach.  相似文献   

4.
Human concentrative nucleoside transporter 3 (hCNT3) utilizes electrochemical gradients of both Na+ and H+ to accumulate pyrimidine and purine nucleosides within cells. We have employed radioisotope flux and electrophysiological techniques in combination with site-directed mutagenesis and heterologous expression in Xenopus oocytes to identify two conserved pore-lining glutamate residues (Glu-343 and Glu-519) with essential roles in hCNT3 Na+/nucleoside and H+/nucleoside cotransport. Mutation of Glu-343 and Glu-519 to aspartate, glutamine, and cysteine severely compromised hCNT3 transport function, and changes included altered nucleoside and cation activation kinetics (all mutants), loss or impairment of H+ dependence (all mutants), shift in Na+:nucleoside stoichiometry from 2:1 to 1:1 (E519C), complete loss of catalytic activity (E519Q) and, similar to the corresponding mutant in Na+-specific hCNT1, uncoupled Na+ currents (E343Q). Consistent with close-proximity integration of cation/solute-binding sites within a common cation/permeant translocation pore, mutation of Glu-343 and Glu-519 also altered hCNT3 nucleoside transport selectivity. Both residues were accessible to the external medium and inhibited by p-chloromercuribenzene sulfonate when converted to cysteine.Physiologic nucleosides and the majority of synthetic nucleoside analogs with antineoplastic and/or antiviral activity are hydrophilic molecules that require specialized plasma membrane nucleoside transporter (NT)3 proteins for transport into or out of cells (14). NT-mediated transport is required for nucleoside metabolism by salvage pathways and is a critical determinant of the pharmacologic actions of nucleoside drugs (36). By regulating adenosine availability to purinoreceptors, NTs also modulate a diverse array of physiological processes, including neurotransmission, immune responses, platelet aggregation, renal function, and coronary vasodilation (4, 6, 7). Two structurally unrelated NT families of integral membrane proteins exist in human and other mammalian cells and tissues as follows: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family (3, 4, 6, 8, 9). ENTs are normally present in most, possibly all, cell types (4, 6, 8). CNTs, in contrast, are found predominantly in intestinal and renal epithelia and other specialized cell types, where they have important roles in absorption, secretion, distribution, and elimination of nucleosides and nucleoside drugs (13, 5, 6, 9).The CNT protein family in humans is represented by three members, hCNT1, hCNT2, and hCNT3. Belonging to a CNT subfamily phylogenetically distinct from hCNT1/2, hCNT3 utilizes electrochemical gradients of both Na+ and H+ to accumulate a broad range of pyrimidine and purine nucleosides and nucleoside drugs within cells (10, 11). hCNT1 and hCNT2, in contrast, are Na+-specific and transport pyrimidine and purine nucleosides, respectively (1113). Together, hCNT1–3 account for the three major concentrative nucleoside transport processes of human and other mammalian cells. Nonmammalian members of the CNT protein family that have been characterized functionally include hfCNT, a second member of the CNT3 subfamily from the ancient marine prevertebrate the Pacific hagfish Eptatretus stouti (14), CeCNT3 from Caenorhabditis elegans (15), CaCNT from Candida albicans (16), and the bacterial nucleoside transporter NupC from Escherichia coli (17). hfCNT is Na+- but not H+-coupled, whereas CeCNT3, CaCNT, and NupC are exclusively H+-coupled. Na+:nucleoside coupling stoichiometries are 1:1 for hCNT1 and hCNT2 and 2:1 for hCNT3 and hfCNT3 (11, 14). H+:nucleoside coupling ratios for hCNT3 and CaCNT are 1:1 (11, 16).Although much progress has been made in molecular studies of ENT proteins (4, 6, 8), studies of structurally and functionally important regions and residues within the CNT protein family are still at an early stage. Topological investigations suggest that hCNT1–3 and other eukaryote CNT family members have a 13 (or possibly 15)-transmembrane helix (TM) architecture, and multiple alignments reveal strong sequence similarities within the C-terminal half of the proteins (18). Prokaryotic CNTs lack the first three TMs of their eukaryotic counterparts, and functional expression of N-terminally truncated human and rat CNT1 in Xenopus oocytes has established that these three TMs are not required for Na+-dependent uridine transport activity (18). Consistent with this finding, chimeric studies involving hCNT1 and hfCNT (14) and hCNT1 and hCNT3 (19) have demonstrated that residues involved in Na+- and H+-coupling reside in the C-terminal half of the protein. Present in this region of the transporter, but of unknown function, is a highly conserved (G/A)XKX3NEFVA(Y/M/F) motif common to all eukaryote and prokaryote CNTs.By virtue of their negative charge and consequent ability to interact directly with coupling cations and/or participate in cation-induced and other protein conformational transitions, glutamate and aspartate residues play key functional and structural roles in a broad spectrum of mammalian and bacterial cation-coupled transporters (2030). Little, however, is known about their role in CNTs. This study builds upon a recent mutagenesis study of conserved glutamate and aspartate residues in hCNT1 (31) to undertake a parallel in depth investigation of corresponding residues in hCNT3. By employing the multifunctional capability of hCNT3 as a template for these studies, this study provides novel mechanistic insights into the molecular mechanism(s) of CNT-mediated cation/nucleoside cotransport, including the role of the (G/A)XKX3NEFVA(Y/M/F) motif.  相似文献   

5.
6.
Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) α in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPα to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPα was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPα was required for the association of PTPα with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPα acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.The interleukin-1 (IL-1)3 family of pro-inflammatory cytokines mediates host responses to infection and injury. Impaired control of IL-1 signaling leads to chronic inflammation and destruction of extracellular matrices (1, 2), as seen in pathological conditions such as pulmonary fibrosis (3), rheumatoid arthritis (4, 5), and periodontitis (6). IL-1 elicits multiple signaling programs, some of which trigger Ca2+ release from the endoplasmic reticulum (ER) as well as expression of multiple cytokines and inflammatory factors including c-Fos and c-Jun (7, 8), and matrix metalloproteinases (9, 10), which mediate extracellular matrix degradation via mitogen-activated protein kinase-regulated pathways (11).In anchorage-dependent cells including fibroblasts and chondrocytes, focal adhesions (FAs) are required for IL-1-induced Ca2+ release from the ER and activation of ERK (1214). FAs are actin-enriched adhesive domains composed of numerous (>50) scaffolding and signaling proteins (1517). Many FA proteins are tyrosine-phosphorylated, including paxillin, focal adhesion kinase, and src family kinases, all of which are crucial for the assembly and disassembly of FAs (1821). Protein-tyrosine phosphorylation plays a central role in regulating many cellular processes including adhesion (22, 23), motility (24), survival (25), and signal transduction (2629). Phosphorylation of proteins by kinases is balanced by protein-tyrosine phosphatases (PTP), which can enhance or attenuate downstream signaling by dephosphorylation of tyrosine residues (3032).PTPs can be divided into two main categories: receptor-like and intracellular PTPs (33). Two receptor-like PTPs have been localized to FA (leukocyte common antigen-related molecule and PTPα). Leukocyte common antigen-related molecule can dephosphorylate and mediate degradation of p130cas, which ultimately leads to cell death (34, 35). PTPα contains a heavily glycosylated extracellular domain, a transmembrane domain, and two intracellular phosphatase domains (33, 36). The amino-terminal domain predominantly mediates catalytic activity, whereas the carboxyl-terminal domain serves a regulatory function (37, 38). PTPα is enriched in FA (23) and is instrumental in regulating FA dynamics (39) via activation of c-Src/Fyn kinases by dephosphorylating the inhibitory carboxyl tyrosine residue, namely Tyr529 (22, 4042) and facilitation of integrin-dependent assembly of Src-FAK and Fyn-FAK complexes that regulate cell motility (43). Although PTPα has been implicated in formation and remodeling of FAs (44, 45), the role of PTPα in FA-dependent signaling is not defined.Ca2+ release from the ER is a critical step in integrin-dependent IL-1 signal transduction and is required for downstream activation of ERK (13, 46). The release of Ca2+ from the ER depends on the inositol 1,4,5-triphosphate receptor (IP3R), which is an IP3-gated Ca2+ channel (47). All of the IP3R subtypes (subtypes 1–3) have been localized to the ER, as well as other the plasma membrane and other endomembranes (4850). Further, IP3R may associate with FAs, enabling the anchorage of the ER to FAs (51, 52). However, the molecule(s) that provide the structural link for this association has not been defined.FA-restricted, IL-1-triggered signal transduction in anchorage-dependent cells may rely on interacting proteins that are enriched in FAs and the ER (53). Here, we examined the possibility that PTPα associates with c-Src and IP3R to functionally link FAs to the ER, thereby enabling IL-1 signal transduction.  相似文献   

7.
8.
9.
10.
The structure of the membrane integral rotor ring of the proton translocating F1F0 ATP synthase from spinach chloroplasts was determined to 3.8 Å resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c11 rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6–10.8 Å apart in both c ring rotors. This finding suggests that both ATPases have the same gear distance despite their different stoichiometries. The putative proton-binding site at the conserved carboxylate Glu61 in the chloroplast ATP synthase differs from the sodium-binding site in Ilyobacter. Residues adjacent to the conserved carboxylate show increased hydrophobicity and reduced hydrogen bonding. The crystal structure reflects the protonated form of the chloroplast c ring rotor. We propose that upon deprotonation, the conformation of Glu61 is changed to another rotamer and becomes fully exposed to the periphery of the ring. Reprotonation of Glu61 by a conserved arginine in the adjacent a subunit returns the carboxylate to its initial conformation.ATP synthases found in the energy-transducing membranes of bacteria, mitochondria, and chloroplasts catalyze ATP synthesis and ATP hydrolysis coupled with transmembrane proton or sodium ion transport. The enzymes are multi-subunit complexes composed of an extra-membranous catalytic F1 domain and an interconnected integral membrane F0 domain. The hydrophilic F1 domain consists of five different polypeptides with a stoichiometry of α3β3γδϵ. Detailed structural information obtained with the mitochondrial enzyme (13) in combination with biochemical (4), biophysical (5), and single molecule studies (69) revealed that synthesis or hydrolysis of ATP in the F1 domain is accomplished via a rotary catalytic mechanism. In addition to information on the catalytic mechanism, structure analysis and single molecule studies of the mitochondrial or the chloroplast F1 complex have also unraveled the molecular mechanism of several F1-specific inhibitors (1014). Less detailed information is available on the integral membrane F0 domain, which consists of three different polypeptides (a, b, and c) and mediates the transfer of protons or sodium ions across the membrane. Subunits a and b were shown to reside at the periphery of a cylindrical complex formed by multiple copies of the c subunit (1518). The number of c subunits in the cylindrical subcomplex shows substantial variation in different organisms. Ten protomers are found in ATP synthases from yeast, Escherichia coli and Bacillus PS3 (1921), 11 in Ilyobacter tartaricus, Propionigenium modestum, and Clostridium paradoxum (2224), 13 in the thermoalkalophilic Bacillus TA2.TA1 (25), 14 in spinach chloroplasts (26), and 15 in the cyanobacterium Spirulina platensis (27). The structure of isolated subunits a, b, and c from E. coli has been studied by mutagenesis analysis and by NMR spectroscopy in a mixed solvent that was suggested to mimic the membrane environment (2832). These studies showed that subunit a folds with five membrane-spanning helices. The fourth of these helices directly interacts with subunit c and contains a conserved arginine (Arg210), which is thought to be involved in proton transfer (33). Subunit b, which is present in two copies in the intact F0, contains a single transmembrane helix. Cross-linking data support a direct interaction of the two copies of the b subunit (29). Subunit c was studied at two different pH values to obtain the protonated and deprotonated form of a conserved carboxylate (Asp61 in E. coli) that was shown to be essential for proton transport (34). NMR spectroscopy revealed that the isolated c subunit consists of two long hydrophobic membrane spanning segments connected by a short hydrophilic loop (30, 35). This loop is located close to the γ and ϵ subunit on the F1 side of the membrane (36, 37). Low resolution x-ray crystallography, cryo-electron microscopy, and atomic force microscopy showed that the membrane-spanning helices of the multiple copies of subunit c in the intact F0 complex are tightly packed in two concentric rings (19, 22, 26). Atomic resolution of the c ring was recently provided for the Na+-translocating F-type ATPase from I. tartaricus (38) and the related Na+-translocating V-type ATPase from Enterococcus hirae (39). Rotation of the c ring was demonstrated by cross-linking (18), fluorescence studies (40), and single molecule visualization (41, 42). Based on the structural and biochemical information on F1 and F0, different mechanical models have been proposed describing how the rotation of the c ring is coupled to the rotation of the F1 rotor subunits. This rotation in turn drives sequential conformational shifts at the three catalytic β subunits that result in ATP synthesis (4345). Vice versa hydrolysis of ATP in the F1 domain is thought to drive rotation of the γϵc10–15 subcomplex and transports protons or sodium ions across the membrane.Here we describe the crystal structure of the chloroplast c14 rotor, which is the first structure of an isolated c ring rotor from a proton driven ATPase. The structure was solved by molecular replacement using a tetradecameric search model that was generated from a monomer taken from the I. tartaricus c11 structure. The imposition of noncrystallographic symmetry restraints during refinement substantially improved electron density and structure determination.  相似文献   

11.
12.
Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17–27HTE) as determined by ELISA (LigBCon4, KD = 0.50 μm; LigBCen7′–8, KD = 0.82 μm; LigBCen9, KD = 1.54 μm; and LigBCen12, KD = 0.73 μm). The interaction of LigBCon4 and 17–27HTE was further confirmed by steady state fluorescence spectroscopy (KD = 0.49 μm) and ITC (KD = 0.54 μm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17–27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.Pathogenic Leptospira spp. are spirochetes that cause leptospirosis, a serious infectious disease of people and animals (1, 2). Weil syndrome, the severe form of leptospiral infection, leads to multiorgan damage, including liver failure (jaundice), renal failure (nephritis), pulmonary hemorrhage, meningitis, abortion, and uveitis (3, 4). Furthermore, this disease is not only prevalent in many developing countries, it is reemerging in the United States (3). Although leptospirosis is a serious worldwide zoonotic disease, the pathogenic mechanisms of Leptospira infection remain enigmatic. Recent breakthroughs in applying genetic tools to Leptospira may facilitate studies on the molecular pathogenesis of leptospirosis (58).The attachment of pathogenic Leptospira spp. to host tissues is critical in the early phase of Leptospira infection. Leptospira spp. adhere to host tissues to overcome mechanical defense systems at tissue surfaces and to initiate colonization of specific tissues, such as the lung, kidney, and liver. Leptospira invade hosts tissues through mucous membranes or injured epidermis, coming in contact with subepithelial tissues. Here, certain bacterial outer surface proteins serve as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs)2 to mediate the binding of bacteria to different extracellular matrices (ECMs) of host cells (9). Several leptospiral MSCRAMMs have been identified (1018), and we speculate that more will be identified in the near future.Lig proteins are distributed on the outer surface of pathogenic Leptospira, and the expression of Lig protein is only found in low passage strains (14, 16, 17), probably induced by environmental cues such as osmotic or temperature changes (19). Lig proteins can bind to fibrinogen and a variety of ECMs, including fibronectin (Fn), laminin, and collagen, thereby mediating adhesion to host cells (2023). Lig proteins also constitute good vaccine candidates (2426).Elastin is a component of ECM critical to tissue elasticity and resilience and is abundant in skin, lung, blood vessels, placenta, uterus, and other tissues (2729). Tropoelastin is the soluble precursor of elastin (28). During the major phase of elastogenesis, multiple tropoelastin molecules associate through coacervation (3032). Because of the abundance of elastin or tropoelastin on the surface of host cells, several bacterial MSCRAMMs use elastin and/or tropoelastin to mediate adhesion during the infection process (3335).Because leptospiral infection is known to cause severe pulmonary hemorrhage (36, 37) and abortion (38), we hypothesize that some leptospiral MSCRAMMs may interact with elastin and/or tropoelastin in these elastin-rich tissues. This is the first report that Lig proteins of Leptospira interact with elastin and tropoelastin, and the interactions are mediated by several specific immunoglobulin-like domains of Lig proteins, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12, which bind to the 17th to 27th exons of human tropoelastin (HTE).  相似文献   

13.
14.
In Gram-positive bacteria, sortase enzymes assemble surface proteins and pili in the cell wall envelope. Sortases catalyze a transpeptidation reaction that joins a highly conserved LPXTG sorting signal within their polypeptide substrate to the cell wall or to other pilin subunits. The molecular basis of transpeptidation and sorting signal recognition are not well understood, because the intermediates of catalysis are short lived. We have overcome this problem by synthesizing an analog of the LPXTG signal whose stable covalent complex with the enzyme mimics a key thioacyl catalytic intermediate. Here we report the solution structure and dynamics of its covalent complex with the Staphylococcus aureus SrtA sortase. In marked contrast to a previously reported crystal structure, we show that SrtA adaptively recognizes the LPXTG sorting signal by closing and immobilizing an active site loop. We have also used chemical shift mapping experiments to localize the binding site for the triglycine portion of lipid II, the second substrate to which surface proteins are attached. We propose a unified model of the transpeptidation reaction that explains the functions of key active site residues. Since the sortase-catalyzed anchoring reaction is required for the virulence of a number of bacterial pathogens, the results presented here may facilitate the development of new anti-infective agents.Bacterial surface proteins function as virulence factors that enable pathogens to adhere to sites of infection, evade the immune response, acquire essential nutrients, and enter host cells (1). Gram-positive bacteria use a common mechanism to covalently attach proteins to the cell wall. This process is catalyzed by sortase transpeptidase enzymes, which join proteins bearing a highly conserved Leu-Pro-X-Thr-Gly (LPXTG, where X is any amino acid) sorting signal to the cross-bridge peptide of the peptidylglycan (24). Sortases also polymerize proteins containing sorting signals into pili, filamentous surface exposed structures that promote bacterial adhesion (5, 6). The search for small molecule sortase inhibitors is an active area of research, since these enzymes contribute to the virulence of a number of important pathogens, including among others Staphylococcus aureus, Listeria monocytogenes, Streptococcus pyogenes, and Streptococcus pneumoniae (reviewed in Refs. 7 and 8). Sortase enzymes are also promising molecular biology reagents that can be used to site-specifically attach proteins to a variety of biomolecules (914, 72).The sortase A (SrtA)7 enzyme from S. aureus is the prototypical member of the sortase enzyme family (15, 16). It anchors proteins to the murein sacculus that possess a COOH-terminal cell wall sorting signal that consists of a LPXTG motif, followed by a hydrophobic segment of amino acids and a tail composed of mostly positively charged residues (17). SrtA is located on the extracellular side of the membrane. After partial secretion of its protein substrate across the cell membrane, SrtA cleaves the LPXTG motif between the threonine and glycine residues, forming a thioacyl-linked protein-sortase intermediate (16). It then catalyzes the formation of an amide bond between the carboxyl group of the threonine and the cell wall precursor molecule lipid II (undecaprenyl-pyrophosphate-MurNAc(-l-Ala-d-iGln-l-Lys(NH2-Gly5)-d-Ala-d-Ala)-β1–4-GlcNAc)), creating a protein-lipid II-linked product that is incorporated into the peptidylglycan via the transglycosylation and transpeptidation reactions of bacterial cell wall synthesis (1820). Over 900 sortase-attached proteins in 72 different strains of bacteria have thus far been identified (21, 22). The vast majority of these proteins contain a COOH-terminal sorting signal harboring an LPXTG motif and are anchored to the cell wall by enzymes closely related to SrtA.In vitro studies of SrtA have begun to define the mechanism of transpeptidation. SrtA consists of two parts: an unstructured amino-terminal tail that contains a stretch of nonpolar residues that embed it in the membrane and an autonomously folded catalytic domain that competently performs the transpeptidation reaction in vitro (SrtAΔN59, residues 60–206) (16, 2325). Catalysis occurs through a ping-pong mechanism that is initiated when the thiol group of amino acid Cys184 nucleophilically attacks the carbonyl carbon of the threonine residue within the LPXTG sorting signal (16, 2325). This forms a transient tetrahedral intermediate that, upon breakage of the threonine-glycine peptide bond, rearranges into a more stable thioacyl enzyme-substrate linkage. SrtA then joins the terminal amine group within the pentaglycine branch of lipid II to the carbonyl carbon of the threonine, creating a second tetrahedral intermediate that is resolved into the lipid II-linked protein product (23).Sortase enzymes contain three conserved residues within their active sites: His120, Cys184, and Arg197 (SrtA numbering). These residues play a critical role in catalysis, since their mutation in SrtA causes severe reductions in enzyme activity (16, 2630). Although it is well established that Cys184 forms a covalent linkage to the sorting signal, the functions of His120 and Arg197 are controversial. A variety of disparate functions have been ascribed to Arg197. These include deprotonating Cys184 (28), deprotonating lipid II (31), or stabilizing the binding of either the LPXTG sorting signal (28, 32) or oxyanion intermediates (31, 32). Different functions have also been proposed for His120. Originally, it was suggested that it activated Cys184 by forming an imidazolium-thiolate ion pair (26). However, subsequent pKa measurements revealed that both His120 and Cys184 are predominantly uncharged at physiological pH values, leading to the suggestion that His120 functions as a general base during catalysis (33). Most recently, it has been proposed that the most active form of the enzyme contains His120 and Cys184 in their charged states but that only a small fraction of SrtA exists in this form (∼0.06%) prior to binding to the sorting signal (25).NMR and crystal structures of SrtAΔN59 have revealed that it adopts an eight-stranded β-barrel fold (31, 34). Other sortase enzymes have also been shown to possess a similar overall structure, including SrtB from S. aureus (27, 35), SrtB from Bacillus anthracis (27, 36), SrtA from S. pyogenes (37), and the SrtC-1 and SrtC-3 enzymes from S. pneumoniae (38). However, the molecular basis of substrate recognition remains poorly understood, because all of the structures reported to date have not contained a sorting signal bound to the enzyme. The lone exception is the crystal structure of SrtAΔN59 bound to an LPETG peptide (31). However, in this structure the peptide substrate is bound nonspecifically (see below) (32, 39).In this paper, we report the structure and dynamics of SrtA covalently bound to an analog of the LPXTG sorting signal. The structure of the complex resembles the thioacyl intermediate of catalysis, providing insights into the molecular basis of binding of the LPXTG sorting signal and the functions of key active site residues. Notably, the mechanism of substrate binding visualized in the NMR structure differs substantially from a previously reported crystal structure of SrtAΔN59 non-covalently bound to a LPETG peptide (31). We have also used NMR chemical shift mapping experiments to localize the binding site for a triglycine cell wall substrate analog. A mechanism of transpeptidation compatible with these new data is proposed.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号