首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Despite decades of effort to develop effective therapy and to identify promising new drugs, prostate cancer is lethal once it progresses to castration-resistant disease. Studies show mis-regulation of multiple pathways in castration-resistant prostate cancer (CRPC), reflecting the heterogeneity of the tumors and also hinting that targeting androgen receptor (AR) pathway alone might not be sufficient to treat CRPC. In this study, we present evidence that the Wnt/β-catenin pathway might be activated in prostate cancer cells after androgen-deprivation to promote androgen-independent growth, partly through enhanced interaction of β-catenin with TCF4. Androgen-independent prostate cancer cells were more prone to activate a Wnt-reporter, and inhibition of the Wnt/β-catenin pathway increased sensitivity of these cells to the second-generation antiandrogen, enzalutamide. Combined treatment of enzalutamide and Wnt/β-catenin inhibitor showed increased growth repression in both androgen-dependent and -independent prostate cancer cells, suggesting therapeutic potential for this approach.  相似文献   

3.
前列腺癌是西方男性发病率最高的癌症之一,在采用雄激素阻断疗法后,大部分患者的病情可得到控制,但经过一段时间又会转变为雄激素非依赖型前列腺癌。雄激素受体(AR)在前列腺细胞中扮演重要的角色,它可调节大量基因的表达。在前列腺癌由雄激素依赖型向雄激素非依赖型的转变过程中,AR及其信号途径通过多种方式发挥作用,AR基因的扩增、AR的突变,以及与共激活子之间作用的改变都可能使细胞获得雄激素非依赖型的生长能力。此外,AR还受到多肽生长因子和细胞因子等的调节,表现激素非依赖型的转录激活活性。AR在前列腺癌中作用的阐明对前列腺癌的诊断与治疗有着重大的意义。  相似文献   

4.
5.
6.
7.
雄激素受体共调节因子与雄激素非依赖性前列腺癌   总被引:1,自引:0,他引:1  
雄激素介导的雄激素受体(AR)信号途径对雄性胚胎的发育及雄激素依赖性靶组织的分化发育是必需的。异常的AR活性与前列腺癌由雄激素依赖转变为雄激素非依赖性密切相关。已证实AR共调节因子参与前列腺癌的发生和发展,并在雄激素非依赖性前列腺癌细胞的增殖中扮演着重要角色。它们的表达失衡,可导致AR转录活性的改变,促进晚期前列腺癌的进展。简要综述了AR共调节因子的类型和功能,及其与雄激素非依赖性前列腺癌的关系。  相似文献   

8.
9.
The enzyme deoxyhypusine hydroxylase (DOHH) catalyzes the activation of eukaryotic translation initiation factor (eIF5A), a protein essential for cell growth. Using bioinformatic predictions and reporter gene assays, we have identified a 182-nt element within the DOHH 3′-untranslated region (3′-UTR) that contains a number of target sites for miR-331-3p and miR-642-5p. Quantitative RT-PCR studies demonstrated overexpression of DOHH mRNA and underexpression of miR-331-3p and miR-642-5p in several prostate cancer cell lines compared with normal prostate epithelial cells. Transient overexpression of miR-331-3p and/or miR-642-5p in DU145 prostate cancer cells reduced DOHH mRNA and protein expression and inhibited cell proliferation. We observed synergistic growth inhibition with the combination of miR-331-3p and miR-642-5p and mimosine, a pharmacological DOHH inhibitor. Finally, we identified a significant inverse relationship between the expression of miR-331-3p or miR-642-5p and DOHH in a cohort of human prostate cancer tissues. Our results suggest a novel role for miR-331-3p and miR-642-5p in the control of prostate cancer cell growth via the regulation of DOHH expression and eIF5A activity.  相似文献   

10.
Androgen receptor (AR) plays a central role in prostate cancer (PCa) growth, with androgen deprivation or AR down-regulation causing cell-cycle arrest and accumulation of the p27 cyclin-dependent kinase inhibitor. The molecular basis for this AR regulation of cell-cycle progression remains unclear. Here we demonstrate that androgen can rapidly reduce p27 protein in PCa cells by increasing its proteasome-mediated degradation. This rapid androgen-stimulated p27 degradation was mediated by AKT through the phosphorylation of p27 T157. Significantly, androgen increased TORC2-mediated AKT S473 phosphorylation without affecting the PDK1-mediated AKT T308 phosphorylation or TORC1 activity. The TORC2 activation was further supported by enhanced mTOR/RICTOR association and increased phosphorylation of additional TORC2 substrates, SGK1 and PKCα. The androgen-stimulated nuclear translocation of AR was associated with markedly-increased nuclear SIN1, a critical component of TORC2. Finally, the androgen-mediated TORC2/AKT activation targets a subset of AKT substrates including p27 and FOXO1, but not PRAS40. This study reveals a pathway linking AR to a selective activation of TORC2, the subsequent activation of AKT, and phosphorylation of a discrete set of AKT substrates that regulate cellular proliferation and survival. These findings establish that TORC2 can function as a central regulator of growth in response to signals that are distinct from those regulating TORC1, and support efforts to target TORC2 for cancer therapy.  相似文献   

11.
12.
13.
14.
雄激素受体共调节因子及其在前列腺癌进展中的作用   总被引:1,自引:0,他引:1  
雄激素受体(AR)信号通路在前列腺癌的发生、进展和转移中发挥着重要作用,但AR介导组织对雄激素的特异应答是通过与其相互作用的AR共调节因子共同完成的,许多AR共调节因子的功能已被广泛研究。简要综述了目前发现的部分AR共调节因子在调节AR转录活性及前列腺癌发生、进展中的生物学作用。  相似文献   

15.
16.
Deregulation of androgen receptor (AR) splice variants has been implicated to play a role in prostate cancer development and progression. To understand their functions in prostate, we established a transgenic mouse model (AR3Tg) with targeted expression of the constitutively active and androgen-independent AR splice variant AR3 (a.k.a. AR-V7) in prostate epithelium. We found that overexpression of AR3 modulates expression of a number of tumor-promoting autocrine/paracrine growth factors (including Tgfβ2 and Igf1) and expands prostatic progenitor cell population, leading to development of prostatic intraepithelial neoplasia. In addition, we showed that some epithelial-mesenchymal transition-associated genes are up-regulated in AR3Tg prostates, suggesting that AR3 may antagonize AR activity and halt the differentiation process driven by AR and androgen. This notion is supported by our observations that the number of Ck5+/Ck8+ intermediate cells is increased in AR3Tg prostates after castration, and expression of AR3 transgene in these intermediate cells compromises prostate epithelium regeneration upon androgen replacement. Our results demonstrate that AR3 is a driver of prostate cancer, at least in part, through modulating multiple tumor-promoting autocrine/paracrine factors.  相似文献   

17.
18.
We investigated the regulatory effects of GRK2 on D2 dopamine receptor signaling and found that this kinase inhibits both receptor expression and functional signaling in a phosphorylation-independent manner, apparently through different mechanisms. Overexpression of GRK2 was found to suppress receptor expression at the cell surface and enhance agonist-induced internalization, whereas short interfering RNA knockdown of endogenous GRK2 led to an increase in cell surface receptor expression and decreased agonist-mediated endocytosis. These effects were not due to GRK2-mediated phosphorylation of the D2 receptor as a phosphorylation-null receptor mutant was regulated similarly, and overexpression of a catalytically inactive mutant of GRK2 produced the same effects. The suppression of receptor expression is correlated with constitutive association of GRK2 with the receptor complex as we found that GRK2 and several of its mutants were able to co-immunoprecipitate with the D2 receptor. Agonist pretreatment did not enhance the ability of GRK2 to co-immunoprecipitate with the receptor. We also found that overexpression of GRK2 attenuated the functional coupling of the D2 receptor and that this activity required the kinase activity of GRK2 but did not involve receptor phosphorylation, thus suggesting the involvement of an additional GRK2 substrate. Interestingly, we found that the suppression of functional signaling also required the Gβγ binding activity of GRK2 but did not involve the GRK2 N-terminal RH domain. Our results suggest a novel mechanism by which GRK2 negatively regulates G protein-coupled receptor signaling in a manner that is independent of receptor phosphorylation.  相似文献   

19.
20.
Prostate tumour growth is almost always dependent upon the androgen receptor pathway and hence therapies aimed at blocking this signalling axis are useful tools in the management of this disease. Unfortunately such therapies invariably fail; and the tumour progresses to an “androgen-independent” stage. In such cases androgen receptor expression is almost always maintained and much evidence exists to suggest that it may still be driving growth. One mechanism by which the receptor is thought to remain active is mutation. This review summarises the present data on androgen receptor mutations in prostate cancer, and how such substitutions offer a growth advantage by affecting cofactor interactions or by reducing ligand specificity. Such alterations appear to have a subsequent effect upon gene expression suggesting that tumours may “behave” differently dependent upon the ligand promoting growth and if a mutation is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号