首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.  相似文献   

4.
5.
Wang B  Li Y  Tan Y  Miao X  Liu XD  Shao C  Yang XH  Turdi S  Ma LJ  Ren J  Cai L 《PloS one》2012,7(3):e33853
BACKGROUND: Cadmium (Cd) is classified as a human carcinogen probably associated with epigenetic changes. DNA methylation is one of epigenetic mechanisms by which cells control gene expression. Therefore, the present study genome-widely screened the methylation-altered genes in the liver of rats previously exposed to low-dose Cd. METHODOLOGY PRINCIPAL FINDINGS: Rats were exposed to Cd at 20 nmol/kg every other day for 4 weeks and gene methylation was analyzed at the 48(th) week with methylated DNA immunoprecipitation-CpG island microarray. Among the 1629 altered genes, there were 675 genes whose promoter CpG islands (CGIs) were hypermethylated, 899 genes whose promoter CGIs were hypomethylated, and 55 genes whose promoter CGIs were mixed with hyper- and hypo-methylation. Caspase-8 gene promoter CGIs and TNF gene promoter CGIs were hypermethylated and hypomethylated, respectively, along with a low apoptosis rate in Cd-treated rat livers. To link the aberrant methylation of caspase-8 and TNF genes to the low apoptosis induced by low-dose Cd, mice were given chronic exposure to low-dose Cd with and without methylation inhibitor (5-aza-2'-deoxyctidene, 5-aza). At the 48(th) week after Cd exposure, livers from Cd-treated mice displayed the increased caspase-8 CGI methylation and decreased caspase-8 protein expression, along with significant increases in cell proliferation and overexpression of TGF-β1 and cytokeratin 8/18 (the latter is a new marker of mouse liver preneoplastic lesions), all which were prevented by 5-aza treatment. CONCLUSION/SIGNIFICANCE: These results suggest that Cd-induced global gene hypermethylation, most likely caspase-8 gene promoter hypermethylation that down-regulated its expression, leading to the decreased hepatic apoptosis and increased preneoplastic lesions.  相似文献   

6.
7.
Previous studies documented significant behavioral changes in the offspring of cocaine-exposed mothers. We now explore the hypothesis that maternal cocaine exposure could alter the fetal epigenetic machinery sufficiently to cause lasting neurochemical and functional changes in the offspring. Pregnant CD1 mice were administered either saline or 20 mg/kg cocaine twice daily on gestational days 8-19. Male pups from each of ten litters of the cocaine and control groups were analyzed at 3 (P3) or 30 (P30) days postnatum. Global DNA methylation, methylated DNA immunoprecipitation followed by CGI(2) microarray profiling and bisulfite sequencing, as well as quantitative real-time RT-PCR gene expression analysis, were evaluated in hippocampal pyramidal neurons excised by laser capture microdissection. Following maternal cocaine exposure, global DNA methylation was significantly decreased at P3 and increased at P30. Among the 492 CGIs whose methylation was significantly altered by cocaine at P3, 34% were hypermethylated while 66% were hypomethylated. Several of these CGIs contained promoter regions for genes implicated in crucial cellular functions. Endogenous expression of selected genes linked to the abnormally methylated CGIs was correspondingly decreased or increased by as much as 4-19-fold. By P30, some of the cocaine-associated effects at P3 endured, reversed to opposite directions, or disappeared. Further, additional sets of abnormally methylated targets emerged at P30 that were not observed at P3. Taken together, these observations indicate that maternal cocaine exposure during the second and third trimesters of gestation could produce potentially profound structural and functional modifications in the epigenomic programs of neonatal and prepubertal mice.  相似文献   

8.
9.
10.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

11.

Background

Mammalian CpG islands (CGIs) normally escape DNA methylation in all adult tissues and developmental stages. However, in our previous study we unexpectedly identified many methylated CGIs in human peripheral blood leukocytes. Methylated CpG dinucleotides convert to TpG dinucleotides through deaminization of their cytosine bases more frequently than hypomethylated CpG dinucleotides. Therefore, we wondered how methylated CGIs in germline or non-germline cells maintain their CpG-rich sequences. It is known that events such as germline hypomethylation, CpG selection, biased gene conversion (BGC), and frequent CpG fixation can contribute to the maintenance of CpG-rich sequences in methylated CGIs in germline or non-germline cells. However, it has not been investigated which of the processes maintain CpG-rich sequences of methylated CGIs in each genomic position.

Results

In this study, we comprehensively examined the contribution of the processes described above to the maintenance of CpG-rich sequences in methylated CGIs in germline and non-germline cells which were classified by genomic positions. Approximately 60–80% of CGIs with high methylation in H1 cell line (H1-HM) in all the genomic positions showed a low average CpG → TpG/CpA substitution rate. In contrast, fewer than half the numbers of CGIs with H1-HM in all the genomic positions showed a low average CpG → TpG/CpA substitution rate and low levels of methylation in sperm cells (SPM-LM). Furthermore, a small fraction of CGIs with a low average CpG → TpG/CpA substitution rate and high levels of methylation in sperm cells (SPM-HM) showed CpG selection.On the other hand, independent of the positions in genes, most CGIs with SPM-HM showed a slightly higher average TpG/CpA → CpG substitution rate compared with those with SPM-LM.

Conclusions

Relatively high numbers (approximately 60–80%) of CGIs with H1-HM in all the genomic positions preserve their CpG-rich sequences by a low CpG → TpG/CpA substitution rate caused mainly by their SPM-LM, and for those with SPM-HM partly by CpG selection and TpG/CpA → CpG fixation. BGC has little contribution to the maintenance of CpG-rich sequences of CGIs with SPM-HM which were classified by genomic positions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1286-x) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.

Background

Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach.

Results

We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age.

Conclusions

This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-653) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
为研究DNA甲基化在帕金森病发病机制中的作用,本研究用环境毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)连续腹腔给药诱导小鼠帕金森病(Parkison's disease,PD)模型,应用ELISA检测小鼠黑质脑组织总体甲基化水平,应用实时荧光定量PCR方法检测DNA甲基转移酶表达水平,探讨MPTP诱导的小鼠PD模型黑质部位是否存在DNA甲基化异常.进一步应用甲基化DNA免疫共沉淀结合DNA甲基化芯片方法,构建MPTP诱导的小鼠PD模型黑质脑组织DNA甲基化谱,并寻找DNA甲基化修饰异常的PD相关基因对其进行验证.结果表明,模型组小鼠黑质脑组织DNA总体甲基化水平较对照组显著降低,Dnmt1的表达水平显著增高.利用DNA甲基化芯片在全基因组内筛选出甲基化差异修饰位点共48个,涉及44个基因,这些甲基化差异基因参与信号转导、分子转运、转录调控、发育、细胞分化、凋亡调控、氧化应激、蛋白质降解等生物学过程.在甲基化差异修饰基因中,对Uchl1基因及Arih2基因进行了甲基化水平以及表达水平的验证.结果表明,模型组小鼠黑质脑组织Uchl1启动子区域甲基化水平较对照组增高,m RNA及蛋白质表达水平降低,Arih2启动子区域甲基化水平较对照组降低,m RNA及蛋白质表达水平增高.实验结果进一步证实,DNA甲基化修饰异常在帕金森病发病机制中有重要作用,环境因素(如MPTP)可以通过改变DNA甲基化修饰参与帕金森病的发生发展.  相似文献   

16.
It was generally believed that autosomal CpG islands (CGIs) escape methylation. However, our comprehensive analysis of allelic methylation status of 149 CGIs on human chromosome 21q revealed that a sizable fraction of them are methylated on both alleles even in normal blood cells. Here, we performed a similar analysis of 656 CGIs on chromosome 11q, which is gene-rich in contrast with 21q. The results indicate that 11q contains less methylated CGIs, especially those with tandem repeats and those in the coding or 3'-untranslated regions (UTRs), than 21q. Thus, methylation status of CGIs may substantially differ from one chromosome to another.  相似文献   

17.
18.
Chromatin properties are regulated by complex networks of epigenome modifications. Currently, it is unclear how these modifications interact and if they control downstream effects such as gene expression. We employed promiscuous chromatin binding of a zinc finger fused catalytic domain of DNMT3A to introduce DNA methylation in HEK293 cells at many CpG islands (CGIs) and systematically investigated the dynamics of the introduced DNA methylation and the consequent changes of the epigenome network. We observed efficient methylation at thousands of CGIs, but it was unstable at about 90% of them, highlighting the power of genome-wide molecular processes that protect CGIs against DNA methylation. Partially stable methylation was observed at about 1000 CGIs, which showed enrichment in H3K27me3. Globally, the introduced DNA methylation strongly correlated with a decrease in gene expression indicating a direct effect. Similarly, global but transient reductions in H3K4me3 and H3K27ac were observed after DNA methylation but no changes were found for H3K9me3 and H3K36me3. Our data provide a global and time-resolved view on the network of epigenome modifications, their connections with DNA methylation and the responses triggered by artificial DNA methylation revealing a direct repressive effect of DNA methylation in CGIs on H3K4me3, histone acetylation, and gene expression.  相似文献   

19.
Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号