首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background and Aims

Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source–sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source–sink imbalances are poorly understood. This study investigated oil palm adjustments to imbalances caused by severe fruit pruning.

Methods

An experiment with two treatments (control and complete fruit pruning) during 22 months in 2006–2008) and six replications per treatment was conducted in Indonesia. Phenology, growth of above-ground vegetative and reproductive organs, leaf morphology, inflorescence sex differentiation, dynamics of non-structural carbohydrate reserves and light-saturated net photosynthesis (Amax) were monitored.

Key Results

Artificial sink limitation by complete fruit pruning accelerated development rate, resulting in higher phytomer, leaf and inflorescence numbers. Leaf size and morphology remained unchanged. Complete fruit pruning also suppressed the abortion of male inflorescences, estimated to be triggered at about 16 months before bunch maturity. The number of female inflorescences increased after an estimated lag of 24–26 months, corresponding to time from sex differentiation to bunch maturity. The most important adjustment process was increased assimilate storage in the stem, attaining nearly 50 % of dry weight in the stem top, mainly as starch, whereas glucose, which in controls was the most abundant non-structural carbohydrate stored in oil palm, decreased.

Conclusions

The development rate of oil palm is in part controlled by source–sink relationships. Although increased rate of development and proportion of female inflorescences constituted observed adjustments to sink limitation, the low plasticity of plant architecture (constant leaf size, absence of branching) limited compensatory growth. Non-structural carbohydrate storage was thus the main adjustment process.Key words: Carbon allocation, non-structural carbohydrates, source–sink relationships, Elaeis guineensis, phenotypic plasticity, photosynthesis  相似文献   

2.

Background and Aims

High temperatures over 32–36 °C at anthesis induce spikelet sterility in rice. The use of a germplasm with an early-morning flowering (EMF) trait has been hypothesized as a way of avoiding this problem. In this study, the effect of the EMF trait on avoiding high temperature-induced sterility at anthesis by flowering at a cooler temperature in the early morning was evaluated.

Methods

The EMF trait was introgressed from wild rice (Oryza officinalis) into the rice cultivar ‘Koshihikari’ (O. sativa). First, spikelets of the EMF line and Koshihikari were subjected to rising temperatures during the daytime in the greenhouse to test for differences in spikelet sterility. Secondly, spikelets of both plants were exposed to 26, 34 and 38 °C at anthesis and to 38 °C beginning at least 1 h after flowering, in the growth chambers at 70 % relative humidity, to test for differences in tolerance to high temperatures.

Key Results

Spikelets of the EMF line started and completed flowering a few hours earlier than Koshihikari. In a greenhouse experiment, spikelets of Koshihikari opened after the air temperature reached 35 °C, but those of the EMF line could open at cooler temperatures. Under these conditions, spikelet sterility significantly increased in Koshihikari, but did not in the EMF line. The number of sterile spikelets increased as their flowering time was delayed in Koshihikari. Furthermore, the chamber experiments revealed that 60 % of the spikelets from both lines were sterile when exposed to 38 °C at anthesis, indicating that tolerance of high temperature was similar in both genotypes.

Conclusions

Reduced sterility in the EMF line subjected to rising temperatures at anthesis in the greenhouse was attributed to an earlier flowering time compared with Koshihikari. The EMF trait of wild rice is effective in mitigating anticipated yield loss due to global warming by escaping high-temperature stress at anthesis during the daytime.  相似文献   

3.

Background and Aims

Relationships between autumn flowering, precipitation and temperature of plant species of Mediterranean coastal shrublands have been described, but not analysed experimentally. These relationships were analysed for two species of co-occurring, dominant, autumn-flowering shrubs, Globularia alypum and Erica multiflora, over 4 years and in experimentally generated drought and warming conditions. The aim was to improve predictions about the responses and adaptations of flowering of Mediterranean vegetation to climate change.

Methods

Beginning of anthesis and date of maximum flowering intensity (‘peak date’) were monitored over 4 years (2001–2004) on a garrigue land type in the noth-east of the Iberian Peninsula. Two experimental treatments were applied, increased temperature (+0·73°C) and reduced soil moisture (–17%) relative to untreated plots.

Key Results

Flowering of Globularia alypum and Erica multiflora differed greatly between years depending on the precipitation of the previous months and the date of the last substantial rainfall (>10 mm). Globularia alypum flowered once or twice (unimodal or bimodal) as the result of differences in the distribution and magnitude of precipitation in late-spring and summer (when floral buds develop). The drought treatment delayed and decreased flowering of Globularia alypum in 2001 and delayed flowering in 2002. Warming extended the period between the beginning of flowering and the end of the second peak for autumn flowering in 2001 and also increased peak intensity in 2002. Flowering of Erica multiflora was unaffected by either treatment.

Conclusions

Autumn flowering of Globularia alypum and Erica multiflora is more dependent on water availability than on temperature. Considerable inter-annual plasticity in the beginning of anthesis and peak date and on unimodal or bimodal flowering constitutes a ‘safe strategy’ for both species in relation to varying precipitation and temperature. However, severe changes in precipitation in spring and summer may severely affect flowering of Globularia alypum but not Erica multiflora, thus affecting development/structure of the ecosystem if such conditions persist.Key words: Globularia alypum, Erica multiflora, autumn flowering, drought, global warming, Mediterranean  相似文献   

4.

Background and Aims

The time at which plants are transferred to floral inductive conditions affects the onset of flowering and plant morphology, due to juvenility. Plants of Brunonia australis and Calandrinia sp. were used to investigate whether Australian native ephemeral species show a distinct juvenile phase that can be extended to increase vegetative growth and flowering.

Methods

The juvenile phase was quantified by transferring seedlings from less inductive (short day and 30/20°C) to inductive (vernalization or long day) conditions at six different plant ages ranging from 4 to 35 d after seed germination. An increase in days to first visible floral bud and leaf number were used to signify the end of juvenility.

Key Results

Brunonia australis was receptive to floral inductive long day conditions about 18–22 d after seed germination, whereas plants aged 4–35 d appeared vernalization sensitive. Overall, transferring plants of B. australis from short to long day conditions reduced the time to anthesis compared with vernalization or constant short day conditions. Calandrinia sp. showed a facultative requirement for vernalization and an insensitive phase was not detected. Floral bud and branch production increased favourably as plant age at time of transfer to inductive conditions increased. Younger plants showed the shortest crop production time.

Conclusions

Both species can perceive the vernalization floral stimulus from a very young age, whereas the photoperiodic stimulus is perceived by B. australis after a period of vegetative growth. However, extending the juvenile phase can promote foliage development and enhance flower production of both species.  相似文献   

5.

Background and Aims

Seeds can accumulate in the soil or elsewhere, such as on the stems of palms when these are covered by persistent sheaths. These sheaths could act as a safe site for some species. Here, we studied whether persistent sheaths of the palm Attalea phalerata (Arecaceae) are available sites for seed accumulation in the Pantanal wetland of Brazil. We also investigated whether the composition, richness and diversity of species of seeds in the persistent sheaths are determined by habitat (riparian forest and forest patches) and/or season (wet and dry).

Methods

All accumulated material was collected from ten persistent sheaths along the stems of 64 A. phalerata individuals (16 per habitat and 16 per season). The material was then individually inspected under a stereomicroscope to record seed species and number.

Key Results

Of the 640 sheaths sampled, 65 % contained seeds (n = 3468). This seed bank included 75 species belonging to 12 families, and was primarily composed of small, endozoochoric seeds, with a few abundant species (Cecropia pachystachya and Ficus pertusa). Moraceae was the richest family (four species) and Urticaceae the most abundant (1594 seeds). Stems of A. phalerata in the riparian forest had 1·8 times more seeds and 1·3 times more species than those in forest patches. In the wet season we sampled 4·1 times more seeds and 2·2 more species on palm stems than in the dry season. Richness did not differ between habitats, but was higher in the wet season. Abundance was higher in forest patches and in the wet season.

Conclusions

Attalea phalerata stems contain a rich seed bank, comparable to soil seed banks of tropical forests. As most of these seeds are not adapted to grow in flooding conditions, palm stems might be regarded as safe sites for seeds (and seedlings) to escape from the seasonal flooding of the Pantanal.  相似文献   

6.

Background and Aims

Interspecific Diphasiastrum hybrids have been assumed to be homoploid and to produce well-formed spores serving sexual reproduction. If this were the case, forms intermediate between hybrids and parents or hybrid swarms should be expected. The purpose of this study was: (1) to check whether homoploidy consistently applies to the three hybrids throughout their Central European range; (2) to examine whether their genome sizes confirm their parentage as assumed by morphology; and (3) to perform a screening for detection of ploidy levels other than diploid and variation in DNA content due to backcrossing.

Methods

Flow cytometry was used first to measure the relative DNA values [with 4′,6-diamidino-2-phenylindole (DAPI) staining] and ploidy level as a general screening, and secondly to determine the absolute DNA 2C values [with propidium iodide (PI) staining] in a number of selected samples with the main focus on the hybrids.

Key Results

A considerable variation of DNA 2C values (5·26–7·52 pg) was detected between the three European Diphasiastrum species. The values of the diploid hybrids are highly constant without significant variation between regions. They are also intermediate between their assumed parents and agree closely with those calculated from their putative parents. This confirms their hybrid origin, assumed parentage and homoploid status. Considerably higher DNA amounts (9·48–10·30 pg) were obtained for three populations, suggesting that these represent triploid hybrids, an interpretation that is strongly supported by their morphology.

Conclusions

Diploid hybrids have retained their genetic and morphological identites throughout their Central European range, and thus no indications for diploid backcrossing were found. The triploid hybrids have probably originated from backcrossing between a diploid gametophyte of a hybrid (derived from a diplospore) and a haploid gametophyte of a diploid parental species. By repeated crossing events, reticulate evolution patterns arise that are similar to those known for a number of ferns.  相似文献   

7.

Background and Aims

Germination and heterotrophic growth are crucial steps for stand establishment. Numerical experiments based on the modelling of these early stages in relation to major environmental factors at sowing were used as a powerful tool to browse the effects of the genetic diversity of Medicago truncatula, one of the model legume species, under a range of agronomic scenarios, and to highlight the most important plant parameters for emergence. To this end, the emergence of several genotypes of M. truncatula was simulated under a range of sowing conditions with a germination and emergence simulation model.

Methods

After testing the predictive quality of the model by comparing simulations to field observations of several genotypes of M. truncatula, numerical experiments were performed under a wide range of environmental conditions (sowing dates × years × seedbed structure). Germination and emergence was simulated for a set of five genotypes previously parameterized and for two virtual genotypes engineered to maximize the potential effects of genetic diversity.

Key Results

The simulation results gave an average value of 5–10 % difference in final emergence between genotypes, which was low, but the analysis underlined considerable inter-annual variation. The effects of parameters describing germination and emergence processes were quantified and ranked according to their contribution to the variation in emergence. Seedling non-emergence was mainly related to mechanical obstacles (40–50 %). More generally, plant parameters that accelerated the emergence time course significantly contributed to limiting the risk of soil surface crusting occurring before seedling emergence.

Conclusions

The model-assisted analysis of the effects of genetic diversity demonstrated its usefulness in helping to identify the parameters which have most influence that could be improved by breeding programmes. These results should also enable a deeper analysis of the genetic determinism of the main plant parameters influencing emergence, using the genomic tools available for this model plant.  相似文献   

8.
Meng ZB  Chen LQ  Suo D  Li GX  Tang CX  Zheng SJ 《Annals of botany》2012,109(6):1055-1064

Background and Aims

Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root formation.

Methods

Measurements were made of the internal concentration of nutrients, levels of nitric oxide (NO), citrate exudation and expression of some specific genes under four P × Fe combinations, namely (1) 50 µm P and 10 µm Fe (+P + Fe); (2) 0 P and 10 µm Fe (–P + Fe); (3) 50 µm P and 0 Fe (+P–Fe); and (4) 0 P and 0 Fe (–P–Fe), and these were examined in relation to the formation of cluster roots.

Key Results

The deficiency of P, Fe or both increased the cluster root number and cluster zones. It also enhanced NO accumulation in pericycle cells and rootlet primordia at various stages of cluster root development. The formation of cluster roots and rootlet primordia, together with the expression of LaSCR1 and LaSCR2 which is crucial in cluster root formation, were induced by the exogenous NO donor S-nitrosoglutathione (GSNO) under the +P + Fe condition, but were inhibited by the NO-specific endogenous scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl- 3-oxide (cPTIO) under –P + Fe, +P–Fe and –P–Fe conditions. However, cluster roots induced by an exogenous supply of the NO donor did not secrete citrate, unlike those formed under –P or –Fe conditions.

Conclusions

NO plays an important role in the shared signalling pathway of the P- and Fe-deficiency-induced formation of cluster roots in white lupin.  相似文献   

9.
Nitrogen and water addition reduce leaf longevity of steppe species   总被引:1,自引:0,他引:1  
Ren H  Xu Z  Huang J  Clark C  Chen S  Han X 《Annals of botany》2011,107(1):145-155

Background and aims

Changes in supplies of resources will modify plant functional traits. However, few experimental studies have addressed the effects of nitrogen and water variations, either singly or in combination, on functional traits.

Methods

A 2-year field experiment was conducted to test the effects of nitrogen and water addition on leaf longevity and other functional traits of the two dominant (Agropyron cristatum and Stipa krylovii) and three most common species (Cleistogenes squarrosa, Melilotoides ruthenica and Potentilla tanacetifolia) in a temperate steppe in northern China.

Key Results

Additional nitrogen and water increased leaf nitrogen content and net photosynthetic rate, and changed other measured functional traits. Leaf longevity decreased significantly with both nitrogen addition (–6 days in 2007 and –5·4 days in 2008; both P < 0·001) and watering (–13 days in 2007 and –9·9 days in 2008; both P < 0·001), and significant differences in leaf longevity were also found among species. Nitrogen and water interacted to affect leaf longevity and other functional traits. Soil water content explained approx. 70 % of the shifts in leaf longevity. Biomass at both species and community level increased under water and nitrogen addition because of the increase in leaf biomass production per individual plant.

Conclusions

The results suggest that additional nitrogen and water supplies reduce plant leaf longevity. Soil water availability might play a fundamental role in determining leaf longevity and other leaf functional traits, and its effects can be modified by soil nitrogen availability in semi-arid areas. The different responses of species to resource alterations may cause different global change ramifications under future climate change scenarios.  相似文献   

10.
Ivey CT  Carr DE 《Annals of botany》2012,109(3):583-598

Background and Aims

Self-fertilizing taxa are often found at the range margins of their progenitors, where sub-optimal habitats may select for alternative physiological strategies. The extent to which self-fertilization is favoured directly vs. arising indirectly through correlations with other adaptive life history traits is unclear. Trait responses to selection depend on genetic variation and covariation, as well as phenotypic and genetic responses to altered environmental conditions. We tested predictions of the hypothesis that self-fertilization in Mimulus arises through direct selection on physiological and developmental traits that allow seasonal drought escape.

Methods

Phenotypic selection on mating system and drought escape traits was estimated in field populations of M. guttatus. In addition, trait phenotype and phenotypic selection were compared between experimental wet and dry soil in two greenhouse populations each of M. guttatus and M. nasutus. Finally, genetic variation and covariation for traits were compared between wet and dry soil treatments in a greenhouse population of M. guttatus.

Key Results

Consistent with predictions, selection for early flowering was generally stronger than for mating system traits, and selection for early flowering was stronger in dry soil. Inconsistent with predictions, selection for water-use efficiency was largely absent; selection for large flowers was stronger than for drought escape in the field; and most drought escape and mating system traits were not genetically correlated. A positive genetic correlation between flowering time and flower size, which opposed the adaptive contour, emerged only in wet soil, suggesting that variation in water availability may maintain variation in these traits. Plastic responses to soil moisture treatments supported the idea that taxonomic divergence could have been facilitated by plasticity in flowering time and selfing.

Conclusions

The hypothesis that plant mating systems may evolve indirectly via selection on correlated life history characteristics is plausible and warrants increased attention.  相似文献   

11.

Background and Aims

Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented.

Methods

Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture.

Key Results

The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts, large nuclei and nucleoli, and numerous plasmodesmata. Plantlets were obtained and after 3 months in culture their growth was significantly better in TIS than on solid culture medium. However, during acclimatization the survival rate of TIS-grown plantlets was lower.

Conclusions

The present study confirms the occurrence of secondary somatic embryos in peach palm and describes a feasible protocol for regeneration of peach palm in vitro. Further optimizations include the use of explants obtained from adult palms and improvement of somatic embryo conversion rates.  相似文献   

12.

Background

Rice (Oryza sativa) and Arabidopsis thaliana have been widely used as model systems to understand how plants control flowering time in response to photoperiod and cold exposure. Extensive research has resulted in the isolation of several regulatory genes involved in flowering and for them to be organized into a molecular network responsive to environmental cues. When plants are exposed to favourable conditions, the network activates expression of florigenic proteins that are transported to the shoot apical meristem where they drive developmental reprogramming of a population of meristematic cells. Several regulatory factors are evolutionarily conserved between rice and arabidopsis. However, other pathways have evolved independently and confer specific characteristics to flowering responses.

Scope

This review summarizes recent knowledge on the molecular mechanisms regulating daylength perception and flowering time control in arabidopsis and rice. Similarities and differences are discussed between the regulatory networks of the two species and they are compared with the regulatory networks of temperate cereals, which are evolutionarily more similar to rice but have evolved in regions where exposure to low temperatures is crucial to confer competence to flower. Finally, the role of flowering time genes in expansion of rice cultivation to Northern latitudes is discussed.

Conclusions

Understanding the mechanisms involved in photoperiodic flowering and comparing the regulatory networks of dicots and monocots has revealed how plants respond to environmental cues and adapt to seasonal changes. The molecular architecture of such regulation shows striking similarities across diverse species. However, integration of specific pathways on a basal scheme is essential for adaptation to different environments. Artificial manipulation of flowering time by means of natural genetic resources is essential for expanding the cultivation of cereals across different environments.  相似文献   

13.

Background and Aims

Spring geophytes require a period of low temperature for proper flower development but the mechanism that underlies the relationship between cold treatment and flowering remains unknown. The present study aims to compare the developmental anatomy and carbohydrate content of the tuberous geophyte Corydalis bracteata growing under natural winter conditions from 10 to −10 °C (field-grown) and under a mild temperature regime of 18 °C (indoor-grown plants).

Methods

Samples were studied under light and electron microscopy. A histochemical test (periodic acid – Schiff''s) was employed to identify starch in sectioned material. Sugars were analysed by capillary gas chromatography. Apoplastic wash fluid was prepared.

Key Results

Under natural conditions, shoots were elongated, and buds gained in dry mass and developed normally. For indoor-grown plants, these parameters were lower in value and, from December, a progressive necrosis of flower buds was observed. The tuber consisted of the new developing one, which was connected to the bud, and the old tuber with its starch reserve. Due to the absence of plasmodesmata between new and old tuber cells, sugar transport cannot be through the symplast. Thus, a potential apoplastic route is proposed from old tuber phloem parenchyma cells to the adjacent new tuber cells. Sugar content in buds during the autumn months (September–November) was lower for indoor-grown plants than control plants, whereas the sugar content in tubers during the same period was similar for plants from both temperature treatments. However, the amount of apoplastic sugars in tubers of field-grown plants was almost 15-fold higher than in indoor-grown tubers.

Conclusions

The results suggest that low temperature activates the apoplastic route of sugar transport in C. bracteata tubers and a consequent carbohydrate delivery to the bud. In the absence of cold treatment, the carbohydrate reserve is locked in old tuber cells so the nutrient supply to the buds is suppressed, possibly leading to bud abortion.  相似文献   

14.

Background and Aims

The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau.

Methods

Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content.

Key Results

The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline.

Conclusions

Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth.  相似文献   

15.

Background and Aims

Oil palm, an unbranched perennial monocotyledon, possesses a single shoot apical meristem (SAM), which is responsible for the initiation of the entire above-ground structure of the plant. To compare the palm SAM structure with those of other monocots and to study variations in its structure throughout the life of the plant, its organization was characterized from the embryonic stage to that of the reproductive plant.

Methods

SAM structure was studied by a combination of stained histological sections, light and confocal microscopy, and serial section-based three-dimensional reconstructions.

Key Results

The oil palm SAM is characterized by two developmental phases: a juvenile phase with a single tunica-corpus structure displaying a gradual increase in size; and a mature phase characterized by a stable size, a modified shape and an established histological zonation pattern. In mature plants, fluctuations in SAM shape and volume occur, mainly as a consequence of changes in the central zone, possibly in relation to leaf initiation.

Conclusions

Development of the oil palm SAM is characterized by a juvenile to mature phase transition accompanied by establishment of a zonal pattern and modified shape. SAM zonation is dynamic during the plastochron period and displays distinct features compared with other monocots.  相似文献   

16.

Background and Aims

Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina.

Methods

One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling.

Key Results

Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the duration of grain filling.

Conclusions

Source–sink modelling holds the promise of accounting for plant–pathogen interactions over time under fluctuating climatic/lighting conditions in a robust way.  相似文献   

17.
Pouteau S  Albertini C 《Annals of botany》2011,107(6):1017-1027

Background and Aims

Reproductive phase change in Arabidopsis thaliana is characterized by two transitions in phytomer identity, the differentiation of the first elongate internode (bolting transition) and of the first flower (floral transition). An evaluation of the dynamics of these transitions was sought by examining the precision of the corresponding phytomer identity changes.

Methods

The length of the first elongate internode and the frequency of chimeric inflorescence structures, e.g. paraclades not subtended by a leaf (no-leaf/paraclades) and flowers subtended by a bract (bract/flowers), were measured in the Wassilewskija (Ws) accession and 47 early flowering mutants under a wide range of photoperiods. The impact of photoperiodic perturbations applied to Ws plants at different times of development was also evaluated.

Key Results

In Ws, both types of characters were remarkably constant across photoperiods in spite of a high degree of interindividual variability. Bract/flowers were not normally produced in Ws, but they were observed in conditions that suggest enhanced light signalling, e.g. in response to continuous light perturbations and in mutants with reduced hypocotyl elongation. In contrast, no-leaf/paraclades were normally present in approx. 20 % of Ws plants, and their frequency was increased in conditions that suggest reduced light signalling, e.g. in mutants with altered specification of long-day responses. The length of the first elongate internode was unrelated to the rate of stem elongation and to the regulation of reproductive phase change.

Conclusions

Bract/flowers and no-leaf/paraclades corresponded to opposite effects on the floral transition that reflected different dynamics of progression to flowering. In contrast, the length of the first elongate internode was only indirectly related to the regulation of reproductive phase change and was mainly dependent on global morphogenetic constraints. This paper proposes that morphogenetic variability could be used to identify critical phases of development and characterize the canalization of developmental patterns.  相似文献   

18.

Background and Aims

Despite their importance for plant production, estimations of below-ground biomass and its distribution in the soil are still difficult and time consuming, and no single reliable methodology is available for different root types. To identify the best method for root biomass estimations, four different methods, with labour requirements, were tested at the same location.

Methods

The four methods, applied in a 6-year-old Eucalyptus plantation in Congo, were based on different soil sampling volumes: auger (8 cm in diameter), monolith (25 × 25 cm quadrate), half Voronoi trench (1·5 m3) and a full Voronoi trench (3 m3), chosen as the reference method.

Key Results

With the reference method (0–1m deep), fine-root biomass (FRB, diameter <2 mm) was estimated at 1·8 t ha−1, medium-root biomass (MRB diameter 2–10 mm) at 2·0 t ha−1, coarse-root biomass (CRB, diameter >10 mm) at 5·6 t ha−1 and stump biomass at 6·8 t ha−1. Total below-ground biomass was estimated at 16·2 t ha−1 (root : shoot ratio equal to 0·23) for this 800 tree ha−1 eucalypt plantation density. The density of FRB was very high (0·56 t ha−1) in the top soil horizon (0–3 cm layer) and decreased greatly (0·3 t ha−1) with depth (50–100 cm). Without labour requirement considerations, no significant differences were found between the four methods for FRB and MRB; however, CRB was better estimated by the half and full Voronoi trenches. When labour requirements were considered, the most effective method was auger coring for FRB, whereas the half and full Voronoi trenches were the most appropriate methods for MRB and CRB, respectively.

Conclusions

As CRB combined with stumps amounted to 78 % of total below-ground biomass, a full Voronoi trench is strongly recommended when estimating total standing root biomass. Conversely, for FRB estimation, auger coring is recommended with a design pattern accounting for the spatial variability of fine-root distribution.  相似文献   

19.

Background

Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest.

Results

A 4.5 K customized oil palm SNP array was developed using the Illumina Infinium platform. The SNPs and 252 SSRs were genotyped on two mapping populations, an intraspecific cross with 87 palms and an interspecific cross with 108 palms. Parental maps with 16 linkage groups (LGs), were constructed for the three fruit forms of E. guineensis (dura, pisifera and tenera). Map resolution was further increased by integrating the dura and pisifera maps into an intraspecific integrated map with 1,331 markers spanning 1,867 cM. We also report the first map of a Colombian E. oleifera, comprising 10 LGs with 65 markers spanning 471 cM. Although not very dense due to the high level of homozygosity in E. oleifera, the LGs were successfully integrated with the LGs of the tenera map. Direct comparison between the parental maps identified 603 transferable markers polymorphic in at least two of the parents. Further analysis revealed a high degree of marker transferability covering 1,075 cM, between the intra- and interspecific integrated maps. The interspecific cross displayed higher segregation distortion than the intraspecific cross. However, inclusion of distorted markers in the genetic maps did not disrupt the marker order and no map expansion was observed.

Conclusions

The high density SNP and SSR-based genetic maps reported in this paper have greatly improved marker density and genome coverage in comparison with the first reference map based on AFLP and SSR markers. Therefore, it is foreseen that they will be more useful for fine mapping of QTLs and whole genome association mapping studies in oil palm.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-309) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background and Aims

The gene flow through pollen or seeds governs the extent of spatial genetic structure in plant populations. Another factor that can contribute to this pattern is clonal growth. The perennial species Arabidopsis lyrata ssp. petraea (Brassicaceae) is a self-incompatible, clonal species found in disjunctive populations in central and northern Europe.

Methods

Fourteen microsatellite markers were employed to study the level of kinship and clonality in a high-altitude mountain valley at Spiterstulen, Norway. The population has a continuous distribution along the banks of the River Visa for about 1·5 km. A total of 17 (10 m × 10 m) squares were laid out in a north–south transect following the river on both sides.

Key Results

It is shown that clonal growth is far more common than previously shown in this species, although the overall size of the genets is small (mean diameter = 6·4 cm). Across the whole population there is no indication of isolation by distance, and spatial genetic structure is only visible on fine spatial scales. In addition, no effect of the river on the spatial distribution of genotypes was found.

Conclusions

Unexpectedly, the data show that populations of small perennials like A. lyrata can behave like panmictic units across relatively large areas at local sites, as opposed to earlier findings in central Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号