首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Quantitative proteomics holds great promise for identifying proteins that are differentially abundant between populations representing different physiological or disease states. A range of computational tools is now available for both isotopically labeled and label-free liquid chromatography mass spectrometry (LC-MS) based quantitative proteomics. However, they are generally not comparable to each other in terms of functionality, user interfaces, information input/output, and do not readily facilitate appropriate statistical data analysis. These limitations, along with the array of choices, present a daunting prospect for biologists, and other researchers not trained in bioinformatics, who wish to use LC-MS-based quantitative proteomics.

Results

We have developed Corra, a computational framework and tools for discovery-based LC-MS proteomics. Corra extends and adapts existing algorithms used for LC-MS-based proteomics, and statistical algorithms, originally developed for microarray data analyses, appropriate for LC-MS data analysis. Corra also adapts software engineering technologies (e.g. Google Web Toolkit, distributed processing) so that computationally intense data processing and statistical analyses can run on a remote server, while the user controls and manages the process from their own computer via a simple web interface. Corra also allows the user to output significantly differentially abundant LC-MS-detected peptide features in a form compatible with subsequent sequence identification via tandem mass spectrometry (MS/MS). We present two case studies to illustrate the application of Corra to commonly performed LC-MS-based biological workflows: a pilot biomarker discovery study of glycoproteins isolated from human plasma samples relevant to type 2 diabetes, and a study in yeast to identify in vivo targets of the protein kinase Ark1 via phosphopeptide profiling.

Conclusion

The Corra computational framework leverages computational innovation to enable biologists or other researchers to process, analyze and visualize LC-MS data with what would otherwise be a complex and not user-friendly suite of tools. Corra enables appropriate statistical analyses, with controlled false-discovery rates, ultimately to inform subsequent targeted identification of differentially abundant peptides by MS/MS. For the user not trained in bioinformatics, Corra represents a complete, customizable, free and open source computational platform enabling LC-MS-based proteomic workflows, and as such, addresses an unmet need in the LC-MS proteomics field.  相似文献   

2.

Background

Current methods of analyzing Affymetrix GeneChip® microarray data require the estimation of probe set expression summaries, followed by application of statistical tests to determine which genes are differentially expressed. The S-Score algorithm described by Zhang and colleagues is an alternative method that allows tests of hypotheses directly from probe level data. It is based on an error model in which the detected signal is proportional to the probe pair signal for highly expressed genes, but approaches a background level (rather than 0) for genes with low levels of expression. This model is used to calculate relative change in probe pair intensities that converts probe signals into multiple measurements with equalized errors, which are summed over a probe set to form the S-Score. Assuming no expression differences between chips, the S-Score follows a standard normal distribution, allowing direct tests of hypotheses to be made. Using spike-in and dilution datasets, we validated the S-Score method against comparisons of gene expression utilizing the more recently developed methods RMA, dChip, and MAS5.

Results

The S-score showed excellent sensitivity and specificity in detecting low-level gene expression changes. Rank ordering of S-Score values more accurately reflected known fold-change values compared to other algorithms.

Conclusion

The S-score method, utilizing probe level data directly, offers significant advantages over comparisons using only probe set expression summaries.  相似文献   

3.

Background

In proteomics studies, liquid chromatography coupled to mass spectrometry (LC-MS) has proven to be a powerful technology to investigate differential expression of proteins/peptides that are characterized by their peak intensities, mass-to-charge ratio (m/z), and retention time (RT). The variable complexity of peptide mixtures and occasional drifts lead to substantial variations in m/z and RT dimensions. Thus, label-free differential protein expression studies by LC-MS technology require alignment with respect to both RT and m/z to ensure that same proteins/peptides are compared from multiple runs.

Methods

In this study, we propose a new strategy to align LC-MALDI-TOF data by combining quality threshold cluster analysis and support vector regression. Our method performs alignment on the basis of measurements in three dimensions (RT, m/z, intensity).

Results and conclusions

We demonstrate the suitability of our proposed method for alignment of LC-MALDI-TOF data through a previously published spike-in dataset and a new in-house generated spike-in dataset. A comparison of our method with other methods that utilize only RT and m/z dimensions reveals that the use of intensity measurements enhances alignment performance.
  相似文献   

4.

Background

The Global Programme to Eliminate Lymphatic Filariasis (GPELF) depends upon Mass Drug Administration (MDA) to interrupt transmission. Therefore, delimitation of transmission risk areas is an important step, and hence we attempted to define a geo-environmental risk model (GERM) for determining the areas of potential transmission of lymphatic filariasis.

Methods

A range of geo-environmental variables has been selected, and customized on GIS platform to develop GERM for identifying the areas of filariasis transmission in terms of "risk" and "non-risk". The model was validated through a 'ground truth study' following standard procedure using GIS tools for sampling and Immuno-chromotographic Test (ICT) for screening the individuals.

Results

A map for filariasis transmission was created and stratified into different spatial entities, "risk' and "non-risk", depending on Filariasis Transmission Risk Index (FTRI). The model estimation corroborated well with the ground (observed) data.

Conclusion

The geo-environmental risk model developed on GIS platform is useful for spatial delimitation purpose on a macro scale.  相似文献   

5.

Background

The advent of pyrophosphate sequencing makes large volumes of sequencing data available at a lower cost than previously possible. However, the short read lengths are difficult to assemble and the large dataset is difficult to handle. During the sequencing of a virus from the tsetse fly, Glossina pallidipes, we found the need for tools to search quickly a set of reads for near exact text matches.

Methods

A set of tools is provided to search a large data set of pyrophosphate sequence reads under a "live" CD version of Linux on a standard PC that can be used by anyone without prior knowledge of Linux and without having to install a Linux setup on the computer. The tools permit short lengths of de novo assembly, checking of existing assembled sequences, selection and display of reads from the data set and gathering counts of sequences in the reads.

Results

Demonstrations are given of the use of the tools to help with checking an assembly against the fragment data set; investigating homopolymer lengths, repeat regions and polymorphisms; and resolving inserted bases caused by incomplete chain extension.

Conclusion

The additional information contained in a pyrophosphate sequencing data set beyond a basic assembly is difficult to access due to a lack of tools. The set of simple tools presented here would allow anyone with basic computer skills and a standard PC to access this information.  相似文献   

6.

Introduction

A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented in this paper, using a mouse model for skin cancer as an example.

Materials and Methods

Blood plasma was collected from ten control mice and ten mice having a mutation in the p19ARF gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists.

Results and Discussions

We assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins are also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localization, transport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application.

Conclusion

These results thus show that an LC-MS-based workflow can be a useful tool for the generation of candidate proteins of interest as part of a disease biomarker discovery effort.  相似文献   

7.

?

We examine the Tree of Life (TOL) as an evolutionary hypothesis and a heuristic. The original TOL hypothesis has failed but a new "statistical TOL hypothesis" is promising. The TOL heuristic usefully organizes data without positing fundamental evolutionary truth.

Reviewers

This article was reviewed by W. Ford Doolittle, Nicholas Galtier and Christophe Malaterre.  相似文献   

8.
9.
10.

Background

Transcranial Doppler Ultrasound (TCD) is a sensitive, real time tool for monitoring cerebral blood flow velocity (CBFV). This technique is fast, accurate, reproducible and noninvasive. In the setting of congenital heart surgery, TCD finds application in the evaluation of cerebral blood flow variations during cardiopulmonary bypass (CPB).

Methodology

We performed a search on human studies published on the MEDLINE using the keyword "trans cranial Doppler" crossed with "pediatric cardiac surgery" AND "cardio pulmonary by pass", OR deep hypothermic cardiac arrest", OR "neurological monitoring".

Discussion

Current scientific evidence suggests a good correlation between changes in cbral blood flow and mean cerebral artery (MCA) blood flow velocity. The introduction of Doppler technology has allowed an accurate monitorization of cerebral blood flow (CBF) during circulatory arrest and low-flow CPB. TCD has also been utilized in detecting cerebral emboli, improper cannulation or cross clamping of aortic arch vessels. Limitations of TCD routine utilization are represented by the need of a learning curve and some experience by the operators, as well as the need of implementing CBF informations with, for example, data on brain tissue oxygen delivery and consumption.

Conclusion

In this light, TCD plays an essential role in multimodal neurological monitorization during CPB (Near Infrared Spectroscopy, TCD, processed electro encephalography) that, according to recent studies, can help to significantly improve neurological outcome after cardiac surgery in neonates and pediatric patients.  相似文献   

11.

Background

Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up.

Findings

Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput.

Conclusions

ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.  相似文献   

12.
Xia  Fei  Dou  Yong  Lei  Guoqing  Tan  Yusong 《BMC bioinformatics》2011,12(1):1-9

Background

Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases.

Results

The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes.

Conclusions

Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.  相似文献   

13.
14.

Background

The increasing number of sequenced prokaryotic genomes contains a wealth of genomic data that needs to be effectively analysed. A set of statistical tools exists for such analysis, but their strengths and weaknesses have not been fully explored. The statistical methods we are concerned with here are mainly used to examine similarities between archaeal and bacterial DNA from different genomes. These methods compare observed genomic frequencies of fixed-sized oligonucleotides with expected values, which can be determined by genomic nucleotide content, smaller oligonucleotide frequencies, or be based on specific statistical distributions. Advantages with these statistical methods include measurements of phylogenetic relationship with relatively small pieces of DNA sampled from almost anywhere within genomes, detection of foreign/conserved DNA, and homology searches. Our aim was to explore the reliability and best suited applications for some popular methods, which include relative oligonucleotide frequencies (ROF), di- to hexanucleotide zero'th order Markov methods (ZOM) and 2.order Markov chain Method (MCM). Tests were performed on distant homology searches with large DNA sequences, detection of foreign/conserved DNA, and plasmid-host similarity comparisons. Additionally, the reliability of the methods was tested by comparing both real and random genomic DNA.

Results

Our findings show that the optimal method is context dependent. ROFs were best suited for distant homology searches, whilst the hexanucleotide ZOM and MCM measures were more reliable measures in terms of phylogeny. The dinucleotide ZOM method produced high correlation values when used to compare real genomes to an artificially constructed random genome with similar %GC, and should therefore be used with care. The tetranucleotide ZOM measure was a good measure to detect horizontally transferred regions, and when used to compare the phylogenetic relationships between plasmids and hosts, significant correlation (R 2 = 0.4) was found with genomic GC content and intra-chromosomal homogeneity.

Conclusion

The statistical methods examined are fast, easy to implement, and powerful for a number of different applications involving genomic sequence comparisons. However, none of the measures examined were superior in all tests, and therefore the choice of the statistical method should depend on the task at hand.  相似文献   

15.

Background

Sepsis is one of the main causes of mortality and morbidity. The rapid detection of pathogens in blood of septic patients is essential for adequate antimicrobial therapy and better prognosis. This study aimed to accelerate the detection and discrimination of Gram-positive (GP) and Gram-negative (GN) bacteria and Candida species in blood culture samples by molecular methods.

Methods

The Real-GP®, -GN®, and -CAN® real-time PCR kit (M&D, Wonju, Republic of Korea) assays use the TaqMan probes for detecting pan-GP, pan-GN, and pan-Candida species, respectively. The diagnostic performances of the real-time PCR kits were evaluated with 115 clinical isolates, 256 positive and 200 negative blood culture bottle samples, and the data were compared to results obtained from conventional blood culture.

Results

Eighty-seven reference strains and 115 clinical isolates were correctly identified with specific probes corresponding to GP-bacteria, GN-bacteria and Candida, respectively. The overall sensitivity and specificity of the real-time PCR kit with blood culture samples were 99.6% and 89.5%, respectively.

Conclusions

The Real-GP®, -GN®, and -CAN® real-time PCR kits could be useful tools for the rapid and accurate screening of bloodstream infections (BSIs).  相似文献   

16.
17.

Introduction

With the rapid development of mass spectrometry-based technologies such as multiple reaction monitoring and heavy-isotope-labeled-peptide standards, quantitative analysis of biomarker proteins using mass spectrometry is rapidly progressing toward detection of target proteins/peptides from clinical samples. Proteotypic peptides are a few peptides that are repeatedly and consistently identified from a protein in a mixture and are used for quantitative analysis of the protein in a complex biological sample by mass spectrometry.

Materials and Methods

Using mass spectrometry, we identified peptide sequences and provided a list of tryptic peptides and glycopeptides as proteotypic peptides from five clinically used tumor markers, including prostate-specific antigen, carcinoembryonic antigen, Her-2, human chorionic gonadotropin, and CA125.

Conclusion

These proteotypic peptides have potential for targeted detection as well as heavy-isotope-peptide standards for quantitative analysis of marker proteins in clinical specimens using a highly specific, sensitive, and high-throughout mass spectrometry-based analysis method.  相似文献   

18.

Background

Hybridization receives attention because of the potential role that it may play in generating evolutionary novelty. An explanation for the emergence of novel phenotypes is given by transgressive segregation, which, if frequent, would imply an important evolutionary role for hybridization. This process is still rarely studied in natural populations as samples of recent hybrids and their parental populations are needed. Further, the detection of transgressive segregation requires phenotypes that can be easily quantified and analysed. We analyse variability in body shape of divergent populations of European sculpins (Cottus gobio complex) as well as natural hybrids among them.

Results

A distance-based method is developed to assign unknown specimens to known groups based on morphometric data. Apparently, body shape represents a highly informative set of characters that parallels the discriminatory power of microsatellite markers in our study system. Populations of sculpins are distinct and "unknown" specimens can be correctly assigned to their source population based on body shape. Recent hybrids are intermediate along the axes separating their parental groups but display additional differentiation that is unique and coupled with the hybrid genetic background.

Conclusion

There is a specific hybrid shape component in natural sculpin hybrids that can be best explained by transgressive segregation. This inference of how hybrids differ from their ancestors provides basic information for future evolutionary studies. Furthermore, our approach may serve to assign candidate specimens to their source populations based on morphometric data and help in the interpretation of population differentiation.  相似文献   

19.

Background

Childhood asthma prevalence is widely measured by parental proxy report of physician-diagnosed asthma in questionnaires. Our objective was to validate this measure in a North American population.

Methods

The 2884 study participants were a subsample of 5619 school children aged 5 to 9 years from 231 schools participating in the Toronto Child Health Evaluation Questionnaire study in 2006. We compared agreement between "questionnaire diagnosis" and a previously validated "health claims data diagnosis". Sensitivity, specificity and kappa were calculated for the questionnaire diagnosis using the health claims diagnosis as the reference standard.

Results

Prevalence of asthma was 15.7% by questionnaire and 21.4% by health claims data. Questionnaire diagnosis was insensitive (59.0%) but specific (95.9%) for asthma. When children with asthma-related symptoms were excluded, the sensitivity increased (83.6%), and specificity remained high (93.6%).

Conclusions

Our results show that parental report of asthma by questionnaire has low sensitivity but high specificity as an asthma prevalence measure. In addition, children with "asthma-related symptoms" may represent a large fraction of under-diagnosed asthma and they should be excluded from the inception cohort for risk factor studies.  相似文献   

20.

Background

Thymic epithelial tumours (thymoma and carcinoma) are exceptionally rare in children. We describe a national multicentre series with a view to illustrating their clinical behaviour and the results of treatment.

Methods

From January 2000 all patients under 18 years of age diagnosed with "rare paediatric tumours" were centrally registered by the Italian centres participating in the TREP project (Tumori Rari in EPediatrica [Rare Tumours in Paediatric Age]). The clinical data of children with a thymic epithelial tumour registered as at December 2009 were analyzed for the purposes of the present study.

Results

Our series comprised 4 patients with thymoma and 5 with carcinoma (4 males, 5 females; median age 12.4 years). The tumour masses were mainly large, exceeding 5 cm in largest diameter. Based on the Masaoka staging system, 3 patients were stage I, 1 was stage III, 1 was stage IVa and 4 were stage IVb. All 3 patients with stage I thymoma underwent complete tumour resection at diagnosis and were alive 22, 35 and 93 months after surgery. One patient with a thymoma metastasizing to the kidneys died rapidly due to respiratory failure. Thymic carcinomas were much more aggressive, infiltrating nearby organs (in 4 cases) and regional nodes (in 5), and spreading to the bone (in 3) and liver (in 1). All patients received multidrug chemotherapy (platinum derivatives + etoposide or other drugs) with evidence of tumour reduction in 3 cases. Two patients underwent partial tumour resection (after chemo-radiotherapy in one case) and 4 patients were given radiotherapy (45-54 Gy). All patients died of their disease.

Conclusions

Children with thymomas completely resected at diagnosis have an excellent prognosis while thymic carcinomas behave aggressively and carry a poor prognosis despite multimodal treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号