首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A subset of people exposed to a traumatic event develops post‐traumatic stress disorder (PTSD), which is associated with dysregulated fear behavior. Genetic variation in SLC18A2, the gene that encodes vesicular monoamine transporter 2 (VMAT2), has been reported to affect risk for the development of PTSD in humans. Here, we use transgenic mice that express either 5% (VMAT2‐LO mice) or 200% (VMAT2‐HI mice) of wild‐type levels of VMAT2 protein. We report that VMAT2‐LO mice have reduced VMAT2 protein in the hippocampus and amygdala, impaired monoaminergic vesicular storage capacity in both the striatum and frontal cortex, decreased monoamine metabolite abundance and a greatly reduced capacity to release dopamine upon stimulation. Furthermore, VMAT2‐LO mice showed exaggerated cued and contextual fear expression, altered fear habituation, inability to discriminate threat from safety cues, altered startle response compared with wild‐type mice and an anxiogenic‐like phenotype, but displayed no deficits in social function. By contrast, VMAT2‐HI mice exhibited increased VMAT2 protein throughout the brain, higher vesicular storage capacity and greater dopamine release upon stimulation compared with wild‐type controls. Behaviorally, VMAT2‐HI mice were similar to wild‐type mice in most assays, with some evidence of a reduced anxiety‐like responses. Together, these data show that presynaptic monoamine function mediates PTSD‐like outcomes in our mouse model, and suggest a causal link between reduced VMAT2 expression and fear behavior, consistent with the correlational relationship between VMAT2 genotype and PTSD risk in humans. Targeting this system is a potential strategy for the development of pharmacotherapies for disorders like PTSD.  相似文献   

2.
We have created a transgenic mouse with a hypomorphic allele of the vesicular monoamine transporter 2 (Vmat2) gene by gene targeting. These mice (KA1) have profound changes in monoamine metabolism and function and survive into adulthood. Specifically, these animals express very low levels of VMAT2, an endogenous protein which sequesters monoamines intracellularly into vesicles, a process that, in addition to being important in normal transmission, may also act to keep intracellular levels of the monoamine neurotransmitters below potentially toxic thresholds. Homozygous mice show large reductions in brain tissue monoamines, motor impairments, enhanced sensitivity to dopamine agonism, and changes in the chemical neuroanatomy of the striatum that are consistent with alterations in the balance of the striatonigral (direct) and striatopallidal (indirect) pathways. The VMAT2-deficient KA1 mice are also more vulnerable to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in terms of nigral dopamine cell death. We suggest that the mice may be of value in examining, long term, the insidious damaging consequences of abnormal intracellular handling of monoamines. On the basis of our current findings, the mice are likely to prove of immediate interest to aspects of the symptomatology of parkinsonism. They may also, however, be of use in probing other aspects of monoaminergic function and dysfunction in the brain, the latter making important contributions to the pathogenesis of schizophrenia and addiction.  相似文献   

3.
Vesicular monoamine transporters (VMATs) are involved in chemical transduction in monoaminergic neurons and various endocrine cells through the storage of monoamines in secretory vesicles. Mammalian pinealocytes contain more 5-hydroxytryptamine (5-HT) than any other cells and are expected to contain VMAT, although no information is available so far. Upon the addition of ATP, radiolabeled 5-HT was taken up by a particulate fraction prepared from cultured rat pinealocytes. The 5-HT uptake was inhibited significantly by bafilomycin A1 (an inhibitor of vacuolar H+-ATPase), 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (a proton conductor), or reserpine (an inhibitor of VMAT). RT-PCR analysis suggested that VMAT type 1 (VMAT1), but not type 2, is expressed. Antibodies against VMAT1 recognized a single polypeptide with an apparent molecular mass of approximately 55 kDa, and specifically immunostained pinealocytes. VMAT1 immunoreactivity was high in the vesicular structures in the varicosities of long branching processes and was associated with 5-HT, but not with synaptophysin, a marker protein for microvesicles. The 5-HT immunoreactivity in the long branching processes disappeared upon incubation with reserpine. These results indicate that 5-HT, at least in part, is stored in vesicles other than microvesicles in pinealocytes through a mechanism similar to that of various secretory vesicles.  相似文献   

4.
Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined—dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.  相似文献   

5.
Our aim was to investigate whether a defect in vesicular monoamine transporter-2 (VMAT2) activities would affect dopaminergic cell functions or not. We examined mesencephalon dopaminergic cultures prepared from VMAT2 wild-type, heterozygous or homozygous knockout (KO) 14-day-old mouse fetuses to determine the number of tyrosine hydroxylase (TH)-positive cells and dopamine transporter activity. The number of TH-positive cells remained unchanged in the VMAT2-KO cultures. Of interest, the dopamine transporter activity in the homozygous cells was significantly decreased, but not in the heterozygous cells, suggesting that complete deletion of VMAT2 inhibited dopamine transporter function. Furthermore, dopamine transporter activity was prominently decreased in the synaptosomal fraction of neonatal homozygous VMAT2-KO mice compared with that of wild-type/heterozygous VMAT2-KO ones, indicating that VMAT2 activity might be one of the factors regulating dopamine transporter activities. To test this possibility, we used reserpine, a VMAT2 inhibitor. Reserpine (1muM) decreased dopamine transporter activity (approx. 50%) in wild-type and heterozygous VMAT2-KO cultures but not in homozygous ones, indicating that blockade of VMAT2 activity reduced dopamine transporter activity. To investigate possible mechanisms underlying the decreased dopamine transporter activity in VMAT2-KO mice, we measured dopamine transporter activities after 24-48h exposure of primary cultures of mesencephalic neurons to dopamine receptor antagonists, PKC inhibitor, PI(3)K inhibitor, and l-DOPA. Among these drugs, l-DOPA slightly reduced the dopamine transporter activities of all genotypes, but the other drugs could not. Since the ratios of reduction in dopamine transporter activity of each genotype treated with l-DOPA were similar, substrate inhibition of dopamine transporters was not the main mechanism underlying the reduced dopamine transporter activity due to genetic deletion of VMAT2. Our results demonstrate that genetic deletion of VMAT2 did not induce immediate cell death but did markedly inhibit dopamine transporter activity.  相似文献   

6.
Variations in the neurotransmitter content of secretory vesicles enable neurons to adapt to network changes. Vesicular content may be modulated by vesicle-associated Go(2), which down-regulates the activity of the vesicular monoamine transmitter transporters VMAT1 in neuroendocrine cells and VMAT2 in neurons. Blood platelets resemble serotonergic neurons with respect to transmitter storage and release. In streptolysin O-permeabilized platelets, VMAT2 activity is also down-regulated by the G protein activator guanosine 5'-(beta(i)gamma-imido)triphosphate (GMppNp). Using serotonin-depleted platelets from peripheral tryptophan hydroxylase knockout (Tph1-/-) mice, we show here that the vesicular filling initiates the G protein-mediated down-regulation of VMAT2 activity. GMppNp did not influence VMAT2 activity in naive platelets from Tph1-/- mice. GMppNp-mediated inhibition could be reconstituted, however, when preloading Tph1-/- platelets with serotonin or noradrenaline. Galpha(q) mediates the down-regulation of VMAT2 activity as revealed from uptake studies performed with platelets from Galpha(q) deletion mutants. Serotonergic, noradrenergic, as well as thromboxane A(2) receptors are not directly involved in the down-regulation of VMAT2 activity. It is concluded that in platelets the vesicle itself regulates transmitter transporter activity via its content and vesicle-associated Galpha(q).  相似文献   

7.
Monoamine storage in secretory granules is mediated by the vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2). The aim of our study was to identify monoamine-handling normal and neoplastic inflammatory cells in the skin by their expression of VMAT1 and VMAT2. Normal skin from various parts of the body, as well as 21 cases of cutaneous mastocytosis and 10 cases of cutaneous Langerhans cell histiocytosis were analyzed by immunohistochemistry, radioactive in situ hybridization, and double-fluorescence confocal microscopy. VMAT2-positive cells in the subepidermal layer were identified as mast cells by their expression of tryptase. Neoplastic mast cells in all cases of cutaneous mastocytosis retained their VMAT2 positivity. The intraepidermal VMAT2-expressing cells were identified as Langerhans cells by their CD1a positivity. VMAT2 was absent from Langerhans cell histiocytosis. VMAT2 is an excellent marker for normal and neoplastic mast cells. The expression of VMAT2 demonstrates the capacity of mast cells for monoamine storage and handling. The presence of VMAT2 in epidermal Langerhans cells revealed a previously unrecognized monoamine-handling phenotype of these cells and indicates possible involvement of amine storage and release associated with antigen presentation. Absence of VMAT2 in neoplastic Langerhans cells indicates a loss of monoamine handling capacity of these cells during tumorigenesis.  相似文献   

8.
The non-neuronal monoamine transporters (OCT1, OCT2, EMT, and PMAT) play a key role in the clearance of monoamines from extracellular compartments. In a previous report we described endometrial distribution and cyclic variation of the vesicular monoamine transporter (VMAT2) mRNA and the neuronal norepinephrine transporter (NET) mRNA. In the present study we used in situ hybridization, real-time PCR and immunohistochemistry to reveal tissue distribution and cyclic variation of mRNA for the non-neuronal monoamine transporters in the human endometrium and early pregnancy decidua. We found that non-neuronal monoamine transporters are predominantly expressed in the stroma. The plasma membrane monoamine transporter (PMAT) mRNA expression peaked in the proliferative phase, whereas the extra-neuronal monoamine transporter (EMT) mRNA expression peaked in the secretory phase. The organic cation transporter 2 (OCT2) mRNA expression was exclusively detected in few scattered stromal cells and OCT1 mRNA was not detected at all. Our present results demonstrate that PMAT, EMT, and OCT2 transporters are expressed in the endometrial stroma and can potentially regulate reuptake of monoamines in general and histamine in particular. Taken together with our previous finding of VMAT2 mRNA in epithelial cells, we suggest a paracrine interaction between stromal and epithelial cells, which may modulate certain steps of the reproductive process.  相似文献   

9.
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.  相似文献   

10.
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.  相似文献   

11.
The vesicular acetylcholine transporter (VAChT) and the vesicular monoamine transporter (VMAT) belong to the same transporter family that packages acetylcholine into synaptic vesicles (SVs) and biogenic amines into large dense core vesicles (LDCVs) and/or SVs, respectively. These transporters share similarities in sequence and structure with their N- and C-terminal domains located in the cytoplasm. When expressed in PC12 cells, VMAT2 localizes to LDCV, whereas VAChT is found mainly on synaptic-like microvesicles. Previous studies have shown that the cytoplasmic C-terminal domain of VAChT contains signals targeting this transporter to SVs. However, the targeting signals for VMAT have not been completely elucidated. To identify signals targeting VMAT2 to LDCV, the subcellular localization of VMAT2-VAChT chimeras was analyzed in PC12 cells. Chimeras having either the N-terminal region through transmembrane domain 2 of VMAT2 or the C-terminal domain of VMAT2 do not traffic to LDCV efficiently. In contrast, chimeras having both of these regions, or the luminal glycosylated loop in conjunction with transmembrane domains 1 and 2 and the C-terminal domain of VMAT2, traffic to LDCV. Treatment of PC12 cells with 1-deoxymannojirimycin, a specific alpha-mannosidase I inhibitor, causes VMAT2 to localize to synaptic-like microvesicles. The results indicate that both mature N-linked glycosylation and the C-terminus are important for proper trafficking of VMAT2 and that the locations of trafficking signals in VMAT2 and VAChT are surprisingly different.  相似文献   

12.
The vesicular monoamine transporter 2 (VMAT2) controls the loading of dopamine (DA) into vesicles and therefore determines synaptic properties such as quantal size, receptor sensitivity, and vesicular and cytosolic DA concentration. Impairment of proper DA compartmentalization is postulated to underlie the sensitivity of DA neurons to oxidative damage and degeneration. It is known that DA can auto-oxidize in the cytosol to form quinones and other oxidative species and that this production of oxidative stress is thought to be a critical factor in DA terminal loss after methamphetamine (METH) exposure. Using a mutant strain of mice (VMAT2 LO), which have only 5–10% of the VMAT2 expressed by wild-type animals, we show that VMAT2 is a major determinant of METH toxicity in the striatum. Subsequent to METH exposure, the VMAT2 LO mice show an exacerbated loss of dopamine transporter and tyrosine hydroxylase (TH), as well as enhanced astrogliosis and protein carbonyl formation. More importantly, VMAT2 LO mice show massive argyrophilic deposits in the striatum after METH, indicating that VMAT2 is a regulator of METH-induced neurodegeneration. The increased METH neurotoxicity in VMAT2 LO occurs in the absence of any significant difference in basal temperature or METH-induced hyperthermia. Furthermore, primary midbrain cultures from VMAT2 LO mice show more oxidative stress generation and a greater loss of TH positive processes than wild-type cultures after METH exposure. Elevated markers of neurotoxicity in VMAT2 LO mice and cultures suggest that the capacity to store DA determines the amount of oxidative stress and neurodegeneration after METH administration.  相似文献   

13.
Uptake of monoamines into secretory granules is mediated by the vesicular monoamine transporters VMAT1 and VMAT2. In this study, we analyzed their expression in inflammatory and hematopoietic cells and in patients suffering from systemic mastocytosis (SM) and chronic myelogenous leukemia (CML). Normal human and monkey tissue specimens and tissues from patients suffering from SM and CML were analyzed by means of immunohistochemistry, radioactive in situ hybridization, real time RT-PCR, double fluorescence confocal laser scanning microscopy, and immunoelectron microscopy. In normal tissue specimens, VMAT2, but not VMAT1, was expressed in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells. Further hematopoietic and lymphoid cells showed no expression of VMATs. VMAT2 was expressed in all types of SM, as indicated by coexpression with the mast cell marker tryptase. In CML, VMAT2 expression was retained in neoplastic megakaryocytes and basophil granulocytes. In conclusion, the identification of VMAT2 in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells provides evidence that these cells possess molecular mechanisms for monoamine storage and handling. VMAT2 identifies normal and neoplastic mast cells, megakaryocytes, and basophil granulocytes and may therefore become a valuable tool for the diagnosis of mastocytosis and malignant systemic diseases involving megakaryocytes and basophil granulocytes.  相似文献   

14.
Abstract: The neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proposed to be attenuated by sequestration into intracellular vesicles by the vesicular monoamine transporter (VMAT2). The purpose of this study was to determine if mice with genetically reduced levels of VMAT2 (heterozygote knockout; VMAT2 +/−) were more vulnerable to MPTP. Striatal dopamine (DA) content, the levels of DA transporter (DAT) protein, and the expression of glial fibrillary acidic protein (GFAP) mRNA, a marker of gliosis, were assessed as markers of MPTP neurotoxicity. In all parameters measured VMAT2 +/− mice were more sensitive than their wild-type littermates (VMAT2 +/+). Administration of MPTP (7.5, 15, or 30 mg/kg, b.i.d.) resulted in dose-dependent reductions in striatal DA levels in both VMAT2 +/− and VMAT2 +/+ animals, but the neurotoxic potency of MPTP was approximately doubled in the VMAT2 +/− mice: 59 versus 23% DA loss 7 days after 7.5 mg/kg dose for VMAT2 +/− and VMAT2 +/+ mice, respectively. Dopaminergic nerve terminal integrity, as assessed by DAT protein expression, also revealed more drastic reductions in the VMAT2 +/− mice: 59 versus 35% loss at 7.5 mg/kg and 95 versus 58% loss at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. Expression of GFAP mRNA 2 days after MPTP was higher in the VMAT2 +/− mice than in the wild-type: 15.8- versus 7.8-fold increase at 7.5 mg/kg and 20.1- versus 9.6-fold at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. These observations clearly demonstrate that VMAT2 +/− mice are more susceptible to the neurotoxic effects of MPTP, suggesting that VMAT2-mediated sequestration of the neurotoxin into vesicles may play an important role in attenuating MPTP toxicity in vivo.  相似文献   

15.
Loss-of-functional mutation in the DJ-1 gene causes a subset of familial Parkinson's disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. Dopamine is synthesized by two enzymes and then packed into synaptic vesicles by vesicular monoamine transporter 2 (VMAT2). In this study, we found that knockdown of DJ-1 expression reduced the levels of mRNA and protein of VMAT2, resulting in reduced VMAT2 activity. Co-immunoprecipitation and pull-down experiments revealed that DJ-1 directly bound to VMAT2, and DJ-1 was co-localized with VMAT2 in cells. Furthermore, ectopic expression of wild-type DJ-1, but not that of L166P, M26I and C106S mutants of DJ-1, increased mRNA and protein levels of VMAT2 and VMAT2 activity. Since VMAT2 and a portion of DJ-1 are localized in the synaptic membrane, these results suggest that DJ-1, but not pathogenically mutated DJ-1, stimulates VMAT2 activity in the synapse by transactivation of the VMAT gene and by direct binding to VMAT2 and that cysteine 106 is necessary for the stimulating activity of DJ-1 toward VMAT2.  相似文献   

16.
[3H]Dihydrotetrabenazine ([3H]DTBZ), a specific ligand for the vesicular monoamine transporter (VMAT2), has been used to characterize the integrity of monoaminergic nerve terminals in experimental animals and humans. The purpose of the present studies was to compare the loss of VMAT2 binding with the loss of other neurochemical markers of the dopamine (DA) nerve terminals in mice treated with neurotoxic doses of methamphetamine (METH) or MPTP. Profound decreases (> or =70%) in DA content, tyrosine hydroxylase activity, and PH]carbomethoxy-3-(4-fluorophenyl)tropane binding to the DA transporter were observed in striatal homogenates at both 1 and 6 days after exposure to the neurotoxins. It is surprising that no significant loss of [3H]DTBZ binding in the homogenates was observed at 1 day after exposure, although a significant loss (-50%) was apparent 6 days later. However, in isolated vesicle preparations, [3H]DTBZ binding and active [3H]DA uptake were markedly reduced (>70%) at 1 day. These observations indicate that vesicle function is compromised at an early time point after exposure to neurotoxic insult. Furthermore, the changes in [H]DTBZ binding in homogenates may not be a sensitive indicator of early damage to synaptic vesicles, although homogenate binding reliably identifies a loss of VMAT2 at later times.  相似文献   

17.
Vesicular monoamine transporter 2 (VMAT2) transports monoamines into storage vesicles in a process that involves exchange of the charged monoamine with two protons. VMAT2 is a member of the DHA12 family of multidrug transporters that belongs to the major facilitator superfamily of secondary transporters. Tetrabenazine (TBZ) is a non-competitive inhibitor of VMAT2 that is used in the treatment of hyperkinetic disorders associated with Huntington disease and Tourette syndrome. Previous biochemical studies suggested that the recognition site for TBZ and monoamines is different. However, the precise mechanism of TBZ interaction with VMAT2 remains unknown. Here we used a random mutagenesis approach and selected TBZ-resistant mutants. The mutations clustered around the lumenal opening of the transporter and mapped to either conserved proline or glycine, or to residues immediately adjacent to conserved proline and glycine. Directed mutagenesis provides further support for the essential role of the latter residues. Our data strongly suggest that the conserved α-helix breaking residues identified in this work play an important role in conformational rearrangements required for TBZ binding and substrate transport. Our results provide a novel insight into the mechanism of transport and TBZ binding by VMAT2.  相似文献   

18.
The vesicular monoamine transporter 2 (VMAT2) plays a pivotal role in regulating the size of vesicular and cytosolic dopamine (DA) storage pools within the CNS, and can thus influence extracellular DA neurotransmission. Transgenic mice have been generated with a dramatically reduced (by approximately 95%) expression of the VMAT2 gene which, unlike complete knockout lines, survive into adulthood. We compared the pre-synaptic regulation of both impulse-dependent (exocytotic) and carrier-mediated (via reversal of the DA transporter, DAT) DA release in the dorsolateral caudate putamen (CPu) of striatal slices derived from adult homozygous VMAT2 mutant and wild-type mice using fast cyclic voltammetry. Impulse-dependent DA release, evoked by a single electrical pulse, was lower in homozygous (116 nm) than wild-type mice (351 nm) indicating smaller vesicular DA stores, an observation supported by the evanescent effect of amfonelic acid (300 nm) in homozygous mice. Amphetamine (2 microm) increased extracellular DA via DAT reversal in both wild-type (by 459 nm) and VMAT2 mutant (by 168 nm, p < 0.01 vs. wild-type) mice. In both cases, the effect was blocked by the DAT inhibitor GBR12935 (1 microm). Simultaneously, amphetamine decreased impulse-dependent DA release, albeit less in homozygous (by 55%) than in wild-type (by 78%) mice. In wild-types, this decrement was largely reversed by GBR12935 but not by the D2/D3 autoreceptor antagonist (-)sulpiride (1 microm). Conversely, in homozygous VMAT2 mutant mice, it was attenuated by (-)sulpiride but not GBR12935. The D2/D3 receptor agonist quinpirole inhibited impulse-dependent DA release with a lower EC50 value in homozygous mice (12 nm) compared with wild-types (34 nm), indicating the compensatory presence of functionally supersensitive release-regulating autoreceptors. However, analysis of DA reuptake kinetics obtained in the absence and presence of DAT blockade (by cocaine and amfonelic acid) revealed only minor differences in DAT functionality. These results demonstrate that impaired vesicular DA storage constrains extracellular DA levels in the dorsolateral CPu whether induced by either impulse-dependent or carrier-mediated mechanisms and that the relative importance of the DAT and terminal autoreceptors as control mechanisms in the actions of amphetamine are reversed in VMAT2 mutant mice.  相似文献   

19.
Studies of synapsin-deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild-type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double-labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.  相似文献   

20.
Vesicular monoamine transporters (VMATs) mediate the transport of dopamine (DA), serotonin (5HT), and other monoamines into secretory vesicles. The regulation of mammalian VMAT and the related vesicular acetylcholine transporter (VAChT) has been proposed to involve membrane trafficking, but the mechanisms remain unclear. To facilitate a genetic analysis of vesicular transporter function and regulation, we have cloned the Drosophila homolog of the vesicular monoamine transporter (dVMAT). We identify two mRNA splice variants (DVMAT-A and B) that differ at their C-terminus, the domain responsible for endocytosis of mammalian VMAT and VAChT. DVMAT-A contains trafficking motifs conserved in mammals but not C. elegans, and internalization assays indicate that the DVMAT-A C-terminus is involved in endocytosis. DVMAT-B contains a divergent C-terminal domain and is less efficiently internalized from the cell surface. Using in vitro transport assays, we show that DVMAT-A recognizes DA, 5HT, octopamine, tyramine, and histamine as substrates, and similar to mammalian VMAT homologs, is inhibited by the drug reserpine and the environmental toxins 2,2,4,5,6-pentachlorobiphenyl and heptachlor. We have developed a specific antiserum to DVMAT-A, and find that it localizes to dopaminergic and serotonergic neurons as well as octopaminergic, type II terminals at the neuromuscular junction. Surprisingly, DVMAT-A is co-expressed at type II terminals with the Drosophila vesicular glutamate transporter. Our data suggest that DVMAT-A functions as a vesicular transporter for DA, 5HT, and octopamine in vivo, and will provide a powerful invertebrate model for the study of transporter trafficking and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号