首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primitive terrestrial life – defined as a chemical system able to transfer its molecular information via self-replication and to evolve – probably originated from the evolution of reduced organic molecules in liquid water. Several sources have been proposed for the prebiotic organic molecules: terrestrial primitive atmosphere (methane or carbon dioxide), deep-sea hydrothermal systems, and extraterrestrial meteoritic and cometary dust grains. The study of carbonaceous chondrites, which contain up to 5% by weight of organic matter, has allowed close examination of the delivery of extraterrestrial organic material. Eight proteinaceous amino acids have been identified in the Murchison meteorite among more than 70 amino acids. Engel reported that l-alanine was surprisingly more abundant than d-alanine in the Murchison meteorite. Cronin also found excesses of l-enantiomers for nonprotein amino acids. A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50- to 100-μm size range, carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon, on average. They might have brought more carbon than that involved in the present surficial biomass. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars, attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well and fossilized microorganisms may still be present in the near subsurface. The Viking missions to Mars in 1976 did not find evidence of either contemporary or past life, but the mass spectrometer on the lander aeroshell determined the atmospheric composition, which has allowed a family of meteorites to be identified as Martian. Although these samples are essentially volcanic in origin, it has been recognized that some of them contain carbonate inclusions and even veins that have a carbon isotopic composition indicative of an origin from Martian atmospheric carbon dioxide. The oxygen isotopic composition of these carbonate deposits allows calculation of the temperature regime existing during formation from a fluid that dissolved the carbon dioxide. As the composition of the fluid is unknown, only a temperature range can be estimated, but this falls between 0° and 90°C, which would seem entirely appropriate for life processes. It was such carbonate veins that were found to host putative microfossils. Irrespective of the existence of features that could be considered to be fossils, carbonate-rich portions of Martian meteorites tend to have material, at more than 1000 ppm, that combusts at a low temperature; i.e., it is an organic form of carbon. Unfortunately, this organic matter does not have a diagnostic isotopic signature so it cannot be unambiguously said to be indigenous to the samples. However, many circumstantial arguments can be made to the effect that it is cogenetic with the carbonate and hence Martian. If it could be proved that the organic matter was preterrestrial, then the isotopic fractionation between it and the carbon is in the right sense for a biological origin. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

2.
Summary A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0° during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.  相似文献   

3.
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.  相似文献   

4.
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.  相似文献   

5.
Methanogenic archaea from Siberian permafrost complementary to the already well-studied methanogens from non-permafrost habitats were exposed to simulated Martian conditions. After 22 days of exposure to thermo-physical conditions at Martian low- and mid-latitudes up to 90% of methanogenic archaea from Siberian permafrost survived in pure cultures as well as in environmental samples. In contrast, only 0.3%–5.8% of reference organisms from non-permafrost habitats survived at these conditions. This suggests that methanogens from terrestrial permafrost seem to be remarkably resistant to Martian conditions. Our data also suggest that in scenario of subsurface lithoautotrophic life on Mars, methanogenic archaea from Siberian permafrost could be used as appropriate candidates for the microbial life on Mars.  相似文献   

6.
The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet’s environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal “missing link” proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth. Presented at: National Workshop on Astrobiology: Search for Life in the Solar System, Capri, Italy, 26 to 28 October, 2005.  相似文献   

7.
Ultraviolet (UV) radiation has been an important environmental parameter during the evolution of life on Earth, both in its role as a mutagen and as a selective agent. This was probably especially true during the time from 3.8 to 2.5 billion years ago, when atmospheric ozone levels were less than 1% of present levels. Early Mars may not have had an "ozone shield" either, and it never developed a significant one. Even though Mars is farther away from the Sun than the Earth, a substantial surficial UV flux is present on Mars today. But organisms respond to dose rate, and on Mars, like on Earth, organisms would be exposed to diurnal variations in UV flux. Here we present data on the effect of diurnal patterns of UV flux on microbial ecosystems in nature, with an emphasis on photosynthesis and DNA synthesis effects. These results indicate that diurnal patterns of metabolism occur in nature with a dip in photosynthesis and DNA synthesis in the afternoon, in part regulated by UV flux. Thus, diurnal patterns must be studied in order to understand the effect of UV radiation in nature. The results of this work are significant to the success of human missions to Mars for several reasons. For example, human missions must include photosynthetic organisms for food production and likely oxygen production. An evolutionary approach suggests which organisms might be best suited for high UV fluxes. The diurnal aspect of these studies is critical. Terraforming is a potential goal of Mars exploration, and it will require studies of the effect of Martian UV fluxes, including their diurnal changes, on terrestrial organisms. Such studies may suggest that diurnal changes in UV only require mitigation at some times of day or year.  相似文献   

8.
The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.  相似文献   

9.
As part of the Viking mission to Mars in 1975, an automated set of instruments is being built to test for the presence of metabolizing organisms on that planet. Three separate modules are combined in this instrument so that samples of the Martian surface can be subjected to a broad array of experimental conditions so as to measure biological activity. The first, the Pyrolytic Release Module, will expose surface samples to a mixture of C14O and C14O2 in the presence of Martian atmosphere and a light source that simulates the Martian visible spectrum. The assay system is designed to determine the extent of assimilation of CO or CO2 into organic compounds. A small amount of water can be injected into the gas phase during incubation upon command. The Gas Exchange Module will incubate surface samples in a humidified CO2 atmosphere. At specified times, portions of the incubation atmosphere will be analyzed by gas chromatography to detect the release or uptake of CO2 and several additional gases. A rich and diversified source of organic nutrients and trace compounds will be available as further additions to the incubating samples. The Label Release Module will incubate surface samples with a dilute aqueous solution of simple radioactive organic substrates in Martian atmosphere, and the gas phase will be monitored continuously for the release of labeled CO2. Each module, in addition to its gas and nutrient sources, incubation chambers, and detector systems, contains heaters capable of sterilizing surface samples to serve as controls. Since the instrument is designed to operate under Martian conditions and to detect Martian, not terrestrial, organisms, and because the final flight instruments can perform only four assays for each module, formidable problems exist in testing the hardware. The implications of this situation are discussed.  相似文献   

10.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

11.
Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (~5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars.  相似文献   

12.
Carbon dioxide can be incorporated into amino acids under conditions simulating the radiation environment of Mars. The mechanism apparently involves carboxyl exchange and may occur with other organic compounds as well. The reaction may play a role in maintaining CO2 equilibrium on the Martian surface.  相似文献   

13.
Many lichens are able to live and photosynthesize under harsh conditions, characterized by low temperatures, aridity and high UV radiation fluxes. Some lichen species are even able to survive simulated and real space conditions. Many tests after space exposure on the satellite FOTON M3 and on the International Space Station have shown their capacity to maintain physiological and photosynthetic activity, and their capacity to germinate and grow after being exposed to space parameters. Further tests using simulated Martian atmospheres, temperatures, humidity profiles and UV radiation spectra and fluxes have shown maintenance of photosynthetic activity of Xanthoria elegans. Results from space and Mars simulation experiments on lichens such as X. elegans are valuable for determining the habitability of a planet and for the search for possible life-supporting habitats on planets like Mars.  相似文献   

14.
G V Levin  P A Straat 《Bio Systems》1977,9(2-3):165-174
Viking radiorespirometry ("Labeled Release" [LR]) experiments conducted on surface material obtained at two sites on Mars have produced results which on Earth would clearly establish the presence of microbial activity in the soil. However, two factors on Mars keep the question open. First, the intense UV flux striking Mars has given rise to several theories postulating the production of highly oxidative compounds. Such compounds might be responsible for the observed results. Second, the molecular analysis experiment has not found organic matter in the Mars surface material, and therefore, does not support the presence of roganisms. However, sensitivity limitations of the organic analysis instrument could permit as many as one million terrestrial type bacteria to go undetected. Terrestrial experiments with UV irradiation of Mars Analog Soil did not produce Mars type LR results. Gamma irradiation of silica gel did produce positive results, but not mimicking those on Mars. The life question remains open.  相似文献   

15.
The Labeled Release extraterrestrial life detection experiment onboard the Viking spacecraft is described as it will be implemented on the surface of Mars in 1976. This experiment is designed to detect heterotrophic life by supplying a dilute solution of radioactive organic substrates to a sample of Martian soil and monitoring for evolution of radioactive gas. A significantly attenuated response by a heat-sterilized control sample of the same soil would confirm a positive metabolic response. Experimental assumptions as well as criteria for the selection of organic substrates are presented. The Labeled Release nutrient has been widely tested, is versatile in eliciting terrestrial metabolic responses, and is stable to heat sterilization and to the long-term storage required before its use on Mars. A testing program has been conducted with flight-like instruments to acquire science data relevant to the interpretation of the Mars experiment. Factors involved in the delineation of a positive result are presented and the significance of the possible results discussed.  相似文献   

16.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

17.
Despite the large amount of geomorphological, geodynamic and geophysical data obtained from Mars missions, much is still unknown about Martian mineralogy and paragenetic assemblages, which is fundamental to an understanding of its entire geological history. Minerals are not only indicators of the physical–chemical settings of the different environments and their later changes, but also they could (and do) play a crucial astrobiological role related with the possibility of existence of extinct or extant Martian life. This paper aims: (1) to present a synoptic review of the main water-related Martian minerals (mainly jarosite and other sulfates) discovered up to the present time; (2) to emphasize their significance as environmental geomarkers, on the basis of their geological settings and mineral parageneses on earth (in particular in the context of some selected terrestrial analogues), and (3) to show that their differential UV shielding properties, against the hostile environmental conditions of the Martian surface, are of a great importance for the search for extraterrestrial life.  相似文献   

18.
Two major questions have been raised by prior explorations of Mars. Has there ever been abundant water on Mars? Why is the iron found in the Martian soil not readily seen in the reflectance spectra of the surface? The work reported here describes a model soil system of Mars Soil Analog Materials, MarSAM, with attributes which could help resolve both of these dilemmas. The first set of MarSAM consisted of a suite of variably iron/calcium-exchanged montmorillonite clays. Several properties, including chemical composition, surface-ion composition, water adsorption isotherms, and reflectance spectra, of these clays have been examined. Also, simulations of the Viking Labeled Release Experiment using the MarSAM were performed. The results of these studies show that surface iron and adsorbed water are important determinants of clay behavior as evidenced by changes in reflectance, water absorption, and clay surface reactions. Thus, these materials provide a model soil system which reasonably satisfies the constraints imposed by the Viking analyses and remote spectral observations of the Martian surface, and which offers a sink for significant amounts of water. Finally, our initial results may provide insights into the mechanisms of reactions that occur on clay surfaces as well as a more specific approach to determining the mineralogy of Martian soils.  相似文献   

19.
We discuss fluorescence as a method to detect polycyclic aromatic hydrocarbons and other organic molecules, as well as minerals on the surface of Mars. We present an instrument design that is adapted from the ChemCam instrument which is currently on the Mars Science Lander Rover Curiosity and thus most of the primary components are currently flight qualified for Mars surface operations, significantly reducing development costs. The major change compared to ChemCam is the frequency multipliers of the 1064 nm laser to wavelengths suitable for fluorescence excitation (266 nm, 355 nm, and 532 nm). We present fluorescence spectrum for a variety of organics and minerals relevant to the surface of Mars. Preliminary results show minerals already known on Mars, such as perchlorate, fluoresce strongest when excited by 355 nm. Also we demonstrate that polycyclic aromatic hydrocarbons, such as those present in Martian meteorites, are highly fluorescent at wavelengths in the ultraviolet (266 nm, 355 nm), but not as much in the visible (532 nm). We conclude that fluorescence can be an important method for Mars applications and standoff detection of organics and minerals. The instrument approach described in this paper builds on existing hardware and offers high scientific return for minimal cost for future missions.  相似文献   

20.
Five conditions for life to arise are discussed with referring to early Martian environment. The key to determine whether any life form appeared on Mars is found to be the early Martian carbon dioxide atmospheric pressure and then the temperature. The importance to determine the heat flow is indicated. The items to be measured for future Martian exploration are listed. The surface materials, which has been poorly understood, are emphasized for further exploration. Two strategies for search for life on Mars, "step by step" strategy and quick strategy, are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号