首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The incidence of aneuploidy in male germ cells was evaluated by analyzing extra marker chromosome(s) signal(s) in round and/or hook spermatids of transgenic mice. Two types of transgenic mice were used as models. The inserted foreign DNA (λ-gt10LacZ shuttle vector and/or pSVc-myc plasmid) was located at the middle of the long arms of chromosome 2 (λ DNA) and/or chromosome 8 (c-myc). The number of marker chromosomes present could easily be detected after fluorescence in situ hybridization (FISH) in testicular cells. The frequency of spontaneous aneuploidy of chromosome 2 was similar in round spermatids of lambda and λ-myc mice. Differential involvement of chromosomes 2 and 8 was observed in both round and hook spermatids. The frequency of spontaneous aneuploidy in round spermatids was higher than that in hook spermatids. The frequency of aneuploidy of marker chromosomes was significantly higher in older mice (2 years old) than in younger ones. Diethylstilbestrol (DES)-induced aneuploidy was dose dependent, and was not influenced by the stage at which germ cells were treated with DES. These results demonstrate the usefulness of a transgenic mouse model for the study of aneuploidy in germ cells. Received: 5 August 1998 / Accepted: 27 August 1998  相似文献   

3.
The recently cloned NaPi-IIb cotransporter is an apical membrane protein that is involved in the absorption of phosphate in the intestine. To expedite functional and structural studies, the human intestinal NaPi-IIb cotransporter was stably expressed in hamster fibroblast (PS120) cells. The hNaPi-IIb cDNA stably transfected cells exhibited a 1.8-fold higher sodium-dependent phosphate uptake than vector DNA transfected cells, and had a K(m) for Pi of approximately 106 microM and a K(m) for Na(+) of approximately 34 mM. The hNaPi-IIb cotransporter was also expressed in Xenopus oocytes and it exhibited a K(m) for Pi of approximately 113 microM and a K(m) for Na(+) of approximately 65 mM. The hNaPi-IIb cotransporter expressed in both PS120 cells and oocytes was inhibited by high external pH. Furthermore, the phosphate uptake mediated by the hNaPi-IIb cotransporter was inhibited by 5 mM phosphonoformic acid (PFA), 1 mM arsenate and 100 nM phorbol myristate acetate (PMA). These results demonstrate that the human intestinal NaPi-IIb cotransporter is functional when expressed in hamster fibroblasts, and that this model system may be useful in the future to identify NaPi-IIb cotransporter-specific inhibitors.  相似文献   

4.
Intestinal and renalabsorption of inorganic phosphate (Pi) is critical forphosphate homeostasis in mammals. We have isolated a cDNA that encodesa type III Na-dependent phosphate cotransporter from mouse smallintestine (mPit-2). The nucleotide sequence of mPit-2 predicts aprotein of 653 amino acids with at least 10 putative transmembranedomains. Kinetic studies, carried out in Xenopus oocytes,showed that mPit-2 cRNA induces significant Na-dependent Piuptake with an apparent Michaelis constant (Km)for phosphate of 38 µM. The transport of phosphate by mPit-2 isinhibited at high pH. Northern blot analysis demonstrated the presenceof mPit-2 mRNA in various tissues, including intestine, kidney, heart,liver, brain, testis, and skin. The highest expression of mPit-2 in the intestine was found in the jejunum. In situ hybridization revealed thatmPit-2 mRNA is expressed throughout the vertical crypt-villus axis ofthe intestinal epithelium. The presence of mPit-2 in the mouseintestine and its unique transport characteristics suggest thatmultiple Na-dependent cotransporters may contribute to phosphate absorption in the mammalian small intestine.

  相似文献   

5.
Captive-bred Australian spinifex hopping mice Notomys alexis have very small testes regardless of their age. Compared with other rodents of similar body mass, these animals also produce and store comparatively low numbers of spermatozoa. In the present study, we thus ask the following questions: (1) what is the testis weight of sexually mature spinifex hopping mice in the natural environment and does this change at different times of reproductive activity of the population and (2) what is the fertility potential of adult sexually mature males? The results show that wild-caught individuals, like the captive-bred animals, invariably have very small testes, regardless of whether females in the population are, or are not, reproducing. Spermatogenesis continues at times when females are reproductively inactive, thus suggesting males may remain potentially able to inseminate females as soon as they enter oestrus. In spite of their very small testes and low epididymal sperm stores, an adult male can fertilize the ovulated oocytes of at least two females within a period of a few days. Thus, although sperm reserves are likely to be heavily depleted after the first ejaculation, males rapidly return to maximum fertility, which is no doubt due, at least in part, to the short sperm epididymal transit time that occurs in this species.  相似文献   

6.
7.
8.
XXSxr pseudomale mice (chromosomally XX animals "sex-reversed" by the Sxr factor) develop testes and produce sufficient androgens for masculinization as assessed at the macroscopic level. However, adult XXSxr pseudomales lack the epididymal initial segment (I.S.). In this study prenatal and postnatal epididymal development was examined histologically and biochemically, and it was found that XXSxr pseudomales are indistinguishable from normal XY males up to day 21 of postnatal life. By 25 days postnatally, before the onset of the pubertal androgen surge, the I.S. precursor is evident in normal animals but absent in XXSxr mutants. No major abnormalities were seen in other segments of the XXSxr epididymis. Our data suggest that androgen levels in testis and epididymis are not higher in normal XY males than in XXSxr pseudomale mice of the same age. Inadequate availability of androgens at the target site is unlikely to be the cause of the epididymal abnormality in XXSxr pseudomale mice.  相似文献   

9.
Mutant copper/zinc superoxide dismutase (SOD1)-overexpressing transgenic mice, a mouse model for familial amyotrophic lateral sclerosis (ALS), provides an excellent resource for developing novel therapies for ALS. Several observations suggest that mitochondria-dependent apoptotic signaling, including caspase-9 activation, may play an important role in mutant SOD1-related neurodegeneration. To elucidate the role of caspase-9 in ALS, we examined the effects of an inhibitor of X chromosome-linked inhibitor of apoptosis (XIAP), a mammalian inhibitor of caspase-3, -7 and -9, and p35, a baculoviral broad caspase inhibitor that does not inhibit caspase-9. When expressed in spinal motor neurons of mutant SOD1 mice using transgenic techniques, XIAP attenuated disease progression without delaying onset. In contrast, p35 delayed onset without slowing disease progression. Moreover, caspase-9 was activated in spinal motor neurons of human ALS subjects. These data strongly suggest that caspase-9 plays a crucial role in disease progression of ALS and constitutes a promising therapeutic target.  相似文献   

10.
During metabolic acidosis, P(i) serves as an important buffer to remove protons from the body. P(i) is released from bone together with carbonate buffering protons in blood. In addition, in the kidney, the fractional excretion of phosphate is increased allowing for the excretion of more acid equivalents in urine. The role of intestinal P(i) absorption in providing P(i) to buffer protons and compensating for loss from bone during metabolic acidosis has not been clarified yet. Inducing metabolic acidosis (NH(4)Cl in drinking water) for 2 or 7 days in mice increased urinary fractional P(i) excretion twofold, whereas serum P(i) levels were not altered. Na(+)-dependent P(i) transport in the small intestine, however, was stimulated from 1.89 +/- 3.22 to 40.72 +/- 11.98 pmol/mg protein (2 days of NH(4)Cl) in brush-border membrane vesicles prepared from total small intestine. Similarly, the protein abundance of the Na(+)-dependent phosphate cotransporter NaPi-IIb in the brush-border membrane was increased 5.3-fold, whereas mRNA levels remained stable. According to immunohistochemistry and real-time PCR NaPi-IIb expression was found to be mainly confined to the ileum in the small intestine, and this distribution was not altered during metabolic acidosis. These results suggest that the stimulation of intestinal P(i) absorption during metabolic acidosis may contribute to the buffering of acid equivalents by providing phosphate and may also help to prevent excessive liberation of phosphate from bone.  相似文献   

11.
12.
Many cells die during development, tissue homeostasis, and disease. Dysregulation of apoptosis leads to cranial neural tube closure (NTC) defects like exencephaly, although the mechanism is unclear. Observing cells undergoing apoptosis in a living context could help elucidate their origin, behavior, and influence on surrounding tissues, but few tools are available for this purpose, especially in mammals. In this paper, we used insulator sequences to generate a transgenic mouse that stably expressed a genetically encoded fluorescence resonance energy transfer (FRET)-based fluorescent reporter for caspase activation and performed simultaneous time-lapse imaging of apoptosis and morphogenesis in living embryos. Live FRET imaging with a fast-scanning confocal microscope revealed that cells containing activated caspases showed typical and nontypical apoptotic behavior in a region-specific manner during NTC. Inhibiting caspase activation perturbed and delayed the smooth progression of cranial NTC, which might increase the risk of exencephaly. Our results suggest that caspase-mediated cell removal facilitates NTC completion within a limited developmental window.  相似文献   

13.
14.
15.
Ion transporters such as Na(+)/H(+) exchanger (NHE), Cl(-)/HCO(3)(-) exchanger (AE), and Na(+)/HCO(3)(-) cotransporter (NBC) are known to contribute to the intracellular pH (pH(i)) regulation during agonist-induced stimulation. This study examined the mechanisms for the pH(i) regulation in the mouse parotid and sublingual acinar cells using the fluorescent pH-sensitive probe, BCECF. The pH(i) recovery from agonist-induced acidification in the sublingual acinar cells was completely blocked by EIPA, a NHE inhibitor. However, the parotid acinar cells required DIDS, a NBC1 inhibitor, in addition to EIPA in order to block the pH(i) recovery. Moreover, RT-PCR analysis detected the expression of pancreatic NBC1 (pNBC1) only in the parotid acinar cells. These results provide strong evidence that the mechanisms for the pH(i) regulation are different in the two types of acinar cells, and pNBC1 contributes to pH(i) regulation in the parotid acinar cells, whereas NHE is likely to be the exclusive pH(i) regulator in the sublingual acinar cells.  相似文献   

16.
Mutations in the cardiac myosin heavy chain (MHC) can cause familial hypertrophic cardiomyopathy (FHC). A transgenic mouse model has been developed in which a missense (R403Q) allele and an actin-binding deletion in the alpha-MHC are expressed in the heart. We used an isovolumic left heart preparation to study the contractile characteristics of hearts from transgenic (TG) mice and their wild-type (WT) littermates. Both male and female TG mice developed left ventricular (LV) hypertrophy at 4 mo of age. LV hypertrophy was accompanied by LV diastolic dysfunction, but LV systolic function was normal and supranormal in the young TG females and males, respectively. At 10 mo of age, the females continued to present with LV concentric hypertrophy, whereas the males began to display LV dilation. In female TG mice at 10 mo of age, impaired LV diastolic function persisted without evidence of systolic dysfunction. In contrast, in 10-mo-old male TG mice, LV diastolic function worsened and systolic performance was impaired. Diminished coronary flow was observed in both 10-mo-old TG groups. These types of changes may contribute to the functional decompensation typically seen in hypertrophic cardiomyopathy. Collectively, these results further underscore the potential utility of this transgenic mouse model in elucidating pathogenesis of FHC.  相似文献   

17.
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver–skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.  相似文献   

18.
Analysis of ubiquitination in vivo using a transgenic mouse model   总被引:3,自引:0,他引:3  
The primary pathway for the proteolytic destruction of cellular proteins is through ubiquitin-mediated targeting to the proteasome. This pathway is pivotal not only in the elimination of damaged or misfolded proteins but also in the temporal, developmental, or signal-mediated destruction of normal cellular substrates. The list of known substrates of the ubiquitin/proteasome pathway is long, but most substrates have been identified in yeast or, more recently, in cultured mammalian cells. It is likely that many mammalian substrates with developmental or disease relevance have yet to be identified because their ubiquitination occurs in tissue or organ systems that cannot be adequately modeled in vitro. We have developed a transgenic mouse model that will allow the isolation and identification of these substrates. The human UbC promoter was used to drive expression of a hexahistidine-tagged version of human ubiquitin in a variety of mouse tissues from early embryonic stages, as assessed by a green fluorescent protein marker. Cleavage of the fusion protein by endogenous enzymes produced epitope-tagged ubiquitin that was detected both in monomeric form and conjugated to cellular proteins. This mouse model should facilitate in the analysis of normal and disease-related ubiquitination events in vivo.  相似文献   

19.
gamma-Glutamyl transpeptidase (gamma-GT), its substrate (GSH) and hydrolytic product (L-glutamic acid) were measured biochemically in mouse reproductive tissues. The epididymal caput and seminal vesicles showed the highest specific activities of gamma-GT, while GSH and L-glutamic acid were widely distributed in all tissues. Histochemically, gamma-GT displayed a strong apical and supranuclear reaction and a moderate basal activity in the ductuli efferents, a weak luminal reaction in the first, a moderate apical reaction in the second and a strong apical and supranuclear reaction in the third segment of the epididymal caput. In the epididymal corpus and cauda, the gamma-GT reaction was confined to the tubular lumina but an apical reaction was also present in the cauda. The daily administration of acivicin (12 mg/kg body weight), an irreversible inhibitor of gamma-GT, for 14 days resulted in a 60% suppression of the enzyme activity in the epididymal caput, while the gamma-GT inhibition in the kidney was greater than 95%. The treatment caused no change in the activity of alanyl aminopeptidase. Histochemically, the basal and supranuclear gamma-GT activities in the ductuli efferents and the third epididymal segment were suppressed, but the apical reactions were maintained. The in-vivo suppression of epididymal gamma-GT activity may have implications in the control of post-testicular sperm maturation.  相似文献   

20.
Deimination refers to conversion of protein-bound arginine into citrulline. An mRNA carrier, RNA binding export factor (REF), present on mitochondria undergoes loss of deimination with impaired ATP5b mRNA transport in ND4 mice (model of multiple sclerosis) compared with the controls. We present evidence of (1) reduced ATP5b mRNA binding strength of non-deiminated REF compared with deiminated REF, (2) impaired ATP5b mRNA transport in ND4 mice and (3) reduced mitochondrial ATP synthase activity on inhibition of deimination in PC12 cells. Impaired deimination of REF and defect in mitochondrial mRNA transport are critical factors in mitochondrial dysfunction in ND4 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号