首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Results of neonatal screening for phenylketonuria (PKU) suggest a west-east gradient of PKU gene frequency in central Europe. In order to test the hypothesis that the unexpectedly high prevalence of PKU in northwestern Germany (northern region of the FRG) is due to the migration of Germans from eastern regions of prewar Germany in the decade after World War II. grandparental origin was determined in a group of 87 pediatric PKU patients and in a control group of 210 children. Grandparents of east German origin were significantly more frequent among the PKU patients. The observed frequency distribution of grandparental subgroups was described by a theoretical distribution in order to obtain a likely set of values for the ratio between the frequency of the PKU gene in the autochthonous populations of prewar northeastern and northwestern Germany. The most likely value for the PKU gene frequency ratio was 1.37, which indicates that the prevalence for PKU in prewar northeastern Germany was almost twice as high as in the autochthonous population of the northwest.Dedicated to Professor P. E. Becker on the occasion of his 75th birthday  相似文献   

2.
Phenylketonuria: an inborn error of phenylalanine metabolism   总被引:1,自引:0,他引:1       下载免费PDF全文
Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine (Phe) metabolism resulting from deficiency of phenylalanine hydroxylase (PAH). Most forms of PKU and hyperphenylalaninaemia (HPA) are caused by mutations in the PAH gene on chromosome 12q23.2. Untreated PKU is associated with an abnormal phenotype which includes growth failure, poor skin pigmentation, microcephaly, seizures, global developmental delay and severe intellectual impairment. However, since the introduction of newborn screening programs and with early dietary intervention, children born with PKU can now expect to lead relatively normal lives. A better understanding of the biochemistry, genetics and molecular basis of PKU, as well as the need for improved treatment options, has led to the development of new therapeutic strategies.  相似文献   

3.
Phenylketonuria (PKU) is an inborn error of amino acid metabolism. Phenylalanine hydroxylase (PAH) deficiency results in accumulation of phenylalanine (Phe) in the brain and leads to pathophysiological abnormalities including cognitive defect, if Phe diet is not restricted. Neuronatin and 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) reportedly have role in memory. Therefore, gene expression was examined in the brain of mouse model for PKU. Microarray expression analysis revealed reduced expression of calpastatin, NIPSNAP 1, rabaptin-5 and minopontin genes and overexpression of neuronatin gene in the PKU mouse brain. Altered expression of these genes was further confirmed by one-step real time RT-PCR analysis. Western blot analysis of the mouse brain showed reduced levels of calpastatin and rabaptin-5 and higher amount of neuronatin in PKU compared to the wild type. These observations in the PKU mouse brain suggest that altered expression of these genes resulting in abnormal proteome. These changes in the PKU mouse brain are likely to contribute cognitive impairment seen in the PKU mouse, if documented also in patients with PKU.  相似文献   

4.
Summary There is a statistically significant difference in the IQ's of PKU and histidinemia parents. The difference is due entirely to the verbal part of the Hamburg-Wechsler test. There is no significant difference in performance. The heterozygous state of histidinemia does not seem to bear an intellectual (evolutionary) advantage, since the IQ's of histidinemia parents show the same distribution as a normal population. In early and mostly well-treated PKU patients, the same slight deficit in verbal IQ appears with increasing age (changing test methods). These patients, simultaneously tested at 4 years of age with the Bühler-Hetzer and Kramer tests, exhibit a statistically significant difference between the results in favor of the less verbal Bühler-Hetzer. Since heterozygots, for PKU never have elevated phenylalanine blood levels, and because tryosine deficiency as argued by others seems highly improbable, we believe that the PKU gene has a more direct action on (or in) at least certain ganglion cells, lowering the verbal IQ slightly, but significantly. This action is not reflected by phenylalanine increase in the extracellular space in heterozygots and is not abolished by dietary treatment in homozygous PKU patients. The major damage in PKU patients must be due to chronic phenylalanine poisoning, which deteriorates cells and/or functions on a much larger scale, because it can be easily prevented by decreasing the phenylalanine blood level with correct dietary treatment.  相似文献   

5.
苯丙酮尿症分子遗传学研究进展   总被引:7,自引:0,他引:7  
张誌  何蕴韶 《遗传》2004,26(5):729-734
苯丙酮尿症是由于苯丙氨酸羟化酶基因突变引起的常染色体隐性遗传病。文章综述了苯丙酮尿症中的苯丙氨酸羟化酶基因的定位、结构、突变、调控以及突变基因的体外表达和苯丙氨酸羟化酶的三维结构特点等分子遗传学进展,阐述了苯丙氨酸羟化酶基因的突变对苯丙氨酸羟化酶的体外表达及其三维结构的影响, 以及部分基因型与表型相关的分子机制。 Abstract: Phenylketonuria(PKU) is one kinds of autusomal recessive disease caused by phenylalanine hydroxylase(PAH) gene mutation. This article reviews the recent molecular heredity progress on the phenylalanine hydroxylase gene’s orientation、structureand gene mutation and gene regulation. At same time, mutation gene in vitro expression and the character of 3D structure of PAH in PKU are involved. In this paper, also discussed the inflence of vitro expression and 3D protein structure by gene mutations and the molecular mechanism of the relationship between genotype and phenotype in PKU patient.  相似文献   

6.
The PKU locus in man is on chromosome 12   总被引:7,自引:3,他引:4       下载免费PDF全文
Classical phenylketonuria (PKU) is a typical example of inborn errors in metabolism and is characterized by a complete lack of the hepatic enzyme phenylalanine hydroxylase, which normally converts phenylalanine to tyrosine. The genetic disorder causes impairment of postnatal brain development, resulting in severe mental retardation in untreated children. The disease is transmitted as an autosomal recessive trait and has a collective prevalence of about one in 10,000 among Caucasians, so that 2% of the population are carriers of the PKU trait. We have recently reported the cloning of human phenylalanine hydroxylase cDNA and that the human chromosomal phenylalanine hydroxylase gene is encoded by a unique DNA sequence. Using the human phenylalanine hydroxylase cDNA clone to analyze a clonal human/mouse hybrid cell panel by Southern hybridization, the phenylalanine hydroxylase gene has been assigned to human chromosome 12. Since the hypothesis that classical PKU is caused by structural mutations in the phenylalanine hydroxylase gene itself rather than through some transregulatory mechanisms has recently been confirmed by gene mapping, the PKU locus in man is determined to be on chromosome 12.  相似文献   

7.
PAH 399 GTA(Val)→GTT(Val), a new silent mutation found in the Chinese   总被引:1,自引:1,他引:0  
Summary A silent mutation or sequence polymorphism, an A to T substitution at codon 399 in exon 11 of the phenylalanine hydroxylase (PAH) gene has been identified by DNA sequence analysis in the Chinese. The frequencies of this new mutation in normal and abnormal (phenylketonuria; PKU) genes are 0.005 and 0.09, respectively, based on the analyses of 100 apparently normal individuals and 39 PKU patients, as demonstrated by DNA amplification with polymerase chain reaction (PCR) and oligonucleotide hybridization methods. The results suggest that there is linkage disequilibrium between this polymorphism and PKU mutations in the PAH gene; approximately 10% of defect PAH alleles in the Chinese population may be identified with this sequence polymorphic marker.  相似文献   

8.
Summary Eight polymorphic restriction enzyme sites at the phenylalanine hydroxylase (PAH) locus were analyzed from the parental chromosomes in 33 Danish nuclear families with at least one phenylketonuric (PKU) child. Determination of haplotypes of 66 normal chromosomes and 66 chromosomes bearing mutant allele (S) demonstrated that there are at least two haplotypes which occur predominantly on PKU chromosomes and rarely otherwise. Overall, the relative frequencies of the various haplotypes are significantly different on PKU-and normal-allele bearing chromosomes, even though there is no predominantly occurring unique haplotype which can characterize the PKU chromosomes. In addition, no significant association (linkage disequilibrium) between any single polymorphic site and the mutant allele (s) was observed. The results suggest that either the phenylketonuric mutation was very ancient so that the polymorphic sites and the mutation have reached linkage equilibrium or the mutant allele (s) are the results of multiple mutations in the phenylalanine hydroxylase gene in man. Furthermore, a crude relationship between standardized linkage disequilibria and physical map distances of the polymorphic sites indicates that there is no apparent recombination hot-spot in the human phenylalanine hydroxylase gene, since the recombination rate within the locus apears to be uniform and likely to be occurring at a rate similar to that within the HLA gene cluster. The limitations of this later analysis are discussed in view of the sampling errors of disequilibrium measure used, and the potential untility of the PAH haplotypes for prenatal diagnosis and detection of PKU carriers is established.  相似文献   

9.
Two missense mutations in the phenylalanine hydroxylase (PAH) genes of Orientals with phenylketonuria (PKU) have been identified. A G-to-A transition in exon 7 of the gene results in the substitution of Gln243 for Arg243 (R243Q) and accounts for 18% of all PKU chromosomes among Chinese. An A-to-G transition in exon 6 of the gene results in the substitution of Cys204 for Tyr204 (Y204C) and identifies about 13 and 5% of all PKU chromosomes in the Chinese and Japanese populations, respectively. The R243Q construct produced less than 10% of normal PAH activity in in vitro expression analysis in a eukaryotic cell system, and patients homozygous for this substitution exhibit a severe clinical phenotype. These results are consistent with previous findings in this expression system. The Y204C construct, however, produced near normal levels of PAH enzyme activity and immunoreactivity in this in vitro expression system. Because this substitution is present only on PKU chromosomes, it is a valuable marker for identifying the corresponding mutant allele for carrier screening of PKU. With the characterization of these two substitutions, about 60% of PKU alleles in China can now be identified. The continuing search for additional PKU mutations will permit effective carrier screening and prenatal gene diagnosis of PKU in East Asia.  相似文献   

10.
Phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene (12q22-q24) resulting in a primary deficiency of the PAH enzyme activity, intolerance to the dietary intake of phenylalanine (Phe) and production of the phenylketonuria (PKU) disease. To date there have been no reports on the molecular analysis of PKU in Iranian population. In this study, the states of the PKU disease in terms of prevalence and mutation spectrum among patients reside in the institutions for mentally retarded in Isfahan was investigated. In the first step, 611 out of 1541 patients with PKU phenotype or severe mental retardation were screened for the PKU disease using the Guthrie bacterial inhibition assay (GBIA) followed by HPLC. Among the patients screened 34 (5.56%) were found positive with abnormal serum Phe of above 7mg/dl. In the next step, the presence of 18 common mutations of the PAH gene in 26 of the patients with classical PKU (serum Phe above 20mg/dl) was investigated, using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Of the 52 independent mutant alleles that were analyzed, 34 (65.38%) were genotyped showing 8 mutations as follows: R252W (15.38%), Q232Q (13.46%), R261Q (7.69%), delL364 (7.69%), IVS10-11g>a (5.77%), L333F (5.77%), V245V (5.77%) and S67P (3.85%). The results from this study may serve as a reference to analyze the PKU mutations in other part of Iran, and to establish diagnostic tests for carrier detection and prenatal diagnosis of the PKU disease in Iranian population.  相似文献   

11.
Phenylketonuria (PKU) is a widespread autosome recessive hereditary disease caused by a deficiency of the liver enzyme phenylalanine hydroxylase, which results in the distortion of phenylalanine metabolism and accumulation of toxic metabolites. The knowledge of molecular bases of PKU is of a high social importance as it enables phenotypic correction of the disease in the case of its early diagnostics. This disease is known to be associated with mutations in the phenylalanine hydroxylase gene, the distribution and mutation spectrum having pronounced ethnic and regional features. We studied the spectrum of mutations in the phenylalanine hydroxylase gene in a group of patients with PKU from the Novosibirsk region to reveal 10 missense point mutations, 1 mutation in the splice donor site, and 1 microdeletion. For these mutations, most widely distributed in the region, we used straightforward detection methods based on the restriction fragment length polymorphism (RFLP), artificial constructed restriction sites (ACRS) PCR, and denaturing gradient gel electrophoresis (DGGE).  相似文献   

12.
Phenylketonuria (PKU) is a widespread autosome recessive hereditary disease caused by a deficiency of the liver enzyme phenylalanine hydroxylase, which results in distortion of metabolism of phenylalanine and accumulation of toxic metabolites. The knowledge of molecular bases of PKU is of a high social importance as it enables phenotypic correction of the disease in the case of its early diagnostics. This disease is known to be associated with mutations in the phenylalanine hydroxylase gene, the distribution and mutation spectrum having pronounced ethnic and regional features. We studied the spectrum of mutations in the phenylalanine hydroxylase gene in a group of patients with PKU from the Novosibirsk region to reveal 10 missense point mutations, 1 mutation in the splice donor site, and 1 microdeletion. For these mutations, most widely distributed in the region, we used straightforward detection methods basing on the restriction fragment length polymorphism (RFLP), artificial constructed restriction sites (ACRS) PCR, and denaturing gradient gel electrophoresis (DGGE).  相似文献   

13.
Mosbah  H.  Donadille  B.  Vatier  C.  Janmaat  S.  Atlan  M.  Badens  C.  Barat  P.  B&#;liard  S.  Beltrand  J.  Ben Yaou  R.  Bismuth  E.  Boccara  F.  Cariou  B.  Chaouat  M.  Charriot  G.  Christin-Maitre  S.  De Kerdanet  M.  Delemer  B.  Disse  E.  Dubois  N.  Eymard  B.  F&#;ve  B.  Lascols  O.  Mathurin  P.  Nob&#;court  E.  Poujol-Robert  A.  Prevost  G.  Richard  P.  Sellam  J.  Tauveron  I.  Treboz  D.  Verg&#;s  B.  Vermot-Desroches  V.  Wahbi  K.  J&#;ru  I.  Vantyghem  M. C.  Vigouroux  C. 《Orphanet journal of rare diseases》2022,17(1):1-21

Phenylketonuria (PKU) is an inherited metabolic disease characterized by a defective conversion of phenylalanine (Phe) to tyrosine, potentially leading to Phe accumulation in the brain. Dietary restriction since birth has led to normal cognitive development. However, PKU patients can still develop cognitive or behavioral abnormalities and subtle neurological deficits. Despite the increasing evidence in the field, the assessment of neurocognitive, psychopathological, and neurological follow-up of PKU patients at different ages is still debated. The high interindividual variability in the cognitive outcome of PKU patients makes the specificity of the neurocognitive and behavioral assessment extremely challenging. In the present paper, a multidisciplinary panel of Italian PKU experts discussed different tools available for cognitive, psychopathological, and neurological assessment at different ages based on the existing literature and daily clinical practice. This study aims to provide evidence and a real-life-based framework for a specific clinical assessment of pediatric, adolescent, and adult patients affected by PKU.

  相似文献   

14.
Orexins/hypocretins are recently discovered neuropeptides, synthesized mainly in the lateral hypothalamus of the brain. Orexins regulate various functions including sleep and apetite. We recently reported increased amount of orexin A in the phenylketonuria (PKU) mouse brain. Whether this is caused by overexpression of the precursor for orexins, prepro-orexin was studied in the PKU mouse brain. Microarray expression analysis revealed overexpression of orexin gene in the brain of PKU mouse. Quantitative real-time RT-PCR showed increased level of prepro-orexin mRNA in the PKU mouse brain. In addition, expression of genes associated with cell signal and growth regulation was also affected in the PKU mouse brain, as observed by microarray analysis. These data suggest that up-regulation of orexin mRNA expression is the possible factor for inducing high orexin A in the brain of PKU mouse. The metabolic environment in the brain of PKU mouse affects normal expression of other genes possibly to result in pathophysiology seen in the PKU mouse, if documented also in patients with PKU.  相似文献   

15.
Phenylketonuria (PKU) is an autosomal recessive disease due to deficiency of a hepatic enzyme, phenylalanine hydroxylase (PAH). The absence of PAH activity results in typical PKU while persistence of a residual enzyme activity gives rise to variant forms of the disease. We report here a 3-base pair in-frame deletion of the PAH gene (delta 194) in a mild variant, with markedly reduced affinity of the enzyme for phenylalanine (Km = 160 nM), and we provide functional evidence for responsibility of the deletion in the mutant phenotype. Since the deletion was located in the third exon of the gene, which presents no homology with other hydroxylases, we suggest that exon 3 is involved in the specificity of the enzyme for phenylalanine. Finally, since none of the 98 PKU patients tested were found to carry this particular deletion, our study suggests that this molecular event probably occurred recently on the background of a haplotype 2 gene in Portugal.  相似文献   

16.
Phenylketonuria (PKU) is a metabolic disorder that results from a deficiency of hepatic phenylalanine hydroxylase (PAH). Identification of the PKU genotype is useful for predicting clinical PKU phenotype. More than 400 mutations resulting in PAH deficiency have been reported worldwide. We used a genedetecting instrument to identify the nine prevalent Japanese mutations in the PAH gene among 31 PKU patients as a preliminary study. This instrument can automatically detect mutations through the use of allele-specific oligonucleotide (ASO) capture probes, and gave results comparable to those of sequencing studies. Each country has uniquely prevalent and specific mutations causing PKU, and less than 50 types of such mutations are generally present in each country. Early genotyping of PKU makes it possible to identify the phenotype and select the optimal therapy for the disease. For early genotyping, the instrumental method described here shortens the time required for genotyping based on mRNA and/or genomic DNA of PKU parents.  相似文献   

17.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

18.
Phenylketonuria (PKU) (OMIM 261600) is the first Mendelian disease to have an identified chemical cause of impaired cognitive development. The disease is accompanied by hyperphenylalaninemia (HPA) and elevated levels of phenylalanine metabolites (phenylacetate (PAA), phenyllactate (PLA), and phenylpyruvate (PPA)) in body fluids. Here we describe a method to determine the concentrations of PAA, PPA, and PLA in the brain of normal and mutant orthologous mice, the latter being models of human PKU and non-PKU HPA. Stable isotope dilution techniques are employed with the use of [(2)H(5)]-phenylacetic acid and [2,3, 3-(2)H(3)]-3-phenyllactic acid as internal standards. Negative ion chemical ionization (NICI)-GC/MS analyses are performed on the pentafluorobenzyl ester derivatives formed in situ in brain homogenates. Unstable PPA in the homogenate is reduced by NaB(2)H(4) to stable PLA, which is labeled with a single deuterium and discriminated from endogenous PLA in the mass spectrometer on that basis. The method demonstrates that these metabolites are easily measured in normal mouse brain and are elevated moderately in HPA mice and greatly in PKU mice. However, their concentrations are not sufficient in PKU to be "toxic"; phenylalanine itself remains the chemical candidate causing impaired cognitive development.  相似文献   

19.
Phenylketonuria (PKU) is one of the few genetic diseases in which mental retardation can be prevented. Hence, diagnosis and treatment must be established early. PKU treatment consists of a phenylalanine-restricted diet supplemented with a phenylalanine-free mixture of amino acids. However, it is difficult to adhere to this diet. In the last decade, a better comprehension of the biochemistry, genetics and molecular basis of the disease, as well as the need for easier treatment, led to the development of several new therapeutic strategies for PKU. In the present study, we evaluated these new therapeutic options in terms of theoretical basis, methodologies, efficacy, and costs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号