首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Klinokinesis is a behavioral mechanism in which an organism moves toward or away from a stimulus source by altering its frequency of change of direction without biasing its turns with respect to the stimulus field. Previous studies of a variety of organisms have demonstrated that rates of adaptation (or other information processing features) for increases and decreases in stimulus intensity are often very different from one another. In order to determine if such asymmetric signal processing could improve the efficiency of klinokinesis, computer modeling studies were performed. The model involved a simple generic version of klinokinesis in 2 dimensions with the rate of adaptation for increasing intensity varied independently of the rate for decreasing intensity. The effects of three types of noise that limit the performance of the model were tested-intensity noise, motor noise, and developmental noise. The results demonstrated that, with all three types of noise, the two adaptation rates had quite different effects on efficiency. The overall pattern of effects was different for each type of noise. In the cases of intensity noise and motor noise, the optimum combination of adaptation rates had a 3-to 5-fold higher rate for decreases in attractant than for increases, which is similar to what has previously been found with bacteria and nematodes.  相似文献   

2.
Organisms that move along helical trajectories change their net direction of motion largely by changing the direction, with respect to the body of the organism, of their rotational velocity (Crenshaw and Edelstein-Keshet, 1993,Bull. math. Biol. 55, 213–230). This paper demonstrates that an organism orients to a stimulus field, such as a chemical concentration gradient or a ray of light, if the components of its rotational velocity, with respect to the, body of the organism, are simple functions of the stimulus intensity encountered by the organism. For example, an organism can orient to a chemical concentration gradient if the rate at which it rotates around its anterior-posterior axis is proportional to the chemical concentration it encounters. Such an orientation can be either positive or negative. Furthermore, it is true taxis—orientation of the axis of helical motion is direct. It is neither a kinesis nor a phobic response—there is no random component to this mechanism of orientation.  相似文献   

3.
Ueda T  Koya S  Maruyama YK 《Bio Systems》1999,54(1-2):65-70
The placozoan Trichoplax adhaerence is one of the most primitive multi-cellular organisms, and moves about accompanying perpetual changes in its shape. Changes in position, locomotion velocity and the outer shape of the organism were monitored quantitatively with use of a computer image analysis, and their dynamic patterns in free locomotion and upon feeding were analyzed in terms of non-linear dynamics. The organism changed its behavioral patterns discontinuously in response to various concentrations of yeast extracts (food). (1) At low concentrations, the organism moved fast with perpetual random changes in shape. Both locomotion velocity and shape changes exhibited 1/f fluctuations. (2) At high concentrations, the shape of the organism as well as the locomotion exhibited oscillations with periods of about 8 min. These limit cycle oscillations bifurcated into the period 2 at the highest concentration tested. The organism flattened more strongly and the locomotion was more reduced on the whole at higher concentrations. (3) At the intermediate concentrations, two patterns as monitored above appeared: one pattern continued for a while and switched to the other abruptly. (4) The average square displacement of the organism increased linearly with time in all cases, indicating that the locomotion is a Brownian movement. In this way, the feeding behaviors by the placozoan are organized as successive co-operative transitions among non-linear dynamic states.  相似文献   

4.
The hardware and software components are described to track many flagellates simultaneously in real time. The technique is based on on-line digitization of four frames taken at 80 ms intervals and stored in a specialized video memory. The outline and position of each organism are determined by chain coding and followed through the recorded series of images. The movement vectors of all organisms tracked are stored in the form of deviation angles from a predefined stimulus (light or gravity) direction and the distance each organism has moved in the time interval determined by the hardware clock of the computer. Subsequent programs allow one to determine circular histograms of movement directions and velocities in dependence of the movement direction. Examples of several orientation patterns are given for both photoorientation and gravitaxis in the dinoflagellate, Peridinium gatunense.Supported by grants from the Deutsche Forschungsgemeinschaft (SFB 305, Marburg and Ha 985/6-1, Erlangen)  相似文献   

5.
Blake R  Sobel KV  Gilroy LA 《Neuron》2003,39(5):869-878
When the visual system is faced with conflicting or ambiguous stimulus information, visual perception fluctuates over time. We found that perceptual alternations are slowed when inducing stimuli move within the visual field, constantly engaging fresh, unadapted neural tissue. During binocular rivalry, dominance durations were longer when rival figures moved compared to when they were stationary, yielding lower alternation rates. Rate was not reduced, however, when observers tracked the moving targets, keeping the images on approximately the same retinal area. Alternations were reliably triggered when rival targets passed through a local region of the visual field preadapted to one of the rival targets. During viewing of a kinetic globe whose direction of rotation was ambiguous, observers experienced fewer alternations in perceived direction when the globe moved around the visual field or when the globe's axis of rotation changed continuously. Evidently, local neural adaptation is a key ingredient in the instability of perception.  相似文献   

6.
Response properties of short-type (R1-6) photoreceptors of the blowfly (Calliphora vicina) were investigated with intracellular recordings using repeated sequences of pseudorandomly modulated light contrast stimuli at adapting backgrounds covering 5 log intensity units. The resulting voltage responses were used to determine the effects of adaptational regulation on signal-to-noise ratios (SNR), signal induced noise, contrast gain, linearity and the dead time in phototransduction. In light adaptation the SNR of the photoreceptors improved more than 100-fold due to (a) increased photoreceptor voltage responses to a contrast stimulus and (b) reduction of voltage noise at high intensity backgrounds. In the frequency domain the SNR was attenuated in low frequencies with an increase in the middle and high frequency ranges. A pseudorandom contrast stimulus by itself did not produce any additional noise. The contrast gain of the photoreceptor frequency responses increased with mean illumination and the gain was best fitted with a model consisting of two second order and one double pole of first order. The coherence function (a normalized measure of linearity and SNR) of the frequency responses demonstrated that the photoreceptors responded linearly (from 1 to 150 Hz) to the contrast stimuli even under fairly dim conditions. The theoretically derived and the recorded phase functions were used to calculate phototransduction dead time, which decreased in light adaptation from approximately 5-2.5 ms. This analysis suggests that the ability of fly photoreceptors to maintain linear performance under dynamic stimulation conditions results from the high early gain followed by delayed compressive feed-back mechanisms.  相似文献   

7.
Memory and the expression of learned behaviors by an organism are often triggered by contextual cues that resemble those that were present when the initial learning occurred. In state-dependent learning, the cue eliciting a learned behavior is a neuroactive drug; behaviors initially learned during exposure to centrally acting compounds such as ethanol are subsequently recalled better if the drug stimulus is again present during testing. Although state-dependent learning is well documented in many vertebrate systems, the molecular mechanisms underlying state-dependent learning and other forms of contextual learning are not understood. Here we demonstrate and present a genetic analysis of state- dependent adaptation in Caenorhabditis elegans. C. elegans normally exhibits adaptation, or reduced behavioral response, to an olfactory stimulus after prior exposure to the stimulus. If the adaptation to the olfactory stimulus is acquired during ethanol administration, the adaptation is subsequently displayed only if the ethanol stimulus is again present. cat-1 and cat-2 mutant animals are defective in dopaminergic neuron signaling and are impaired in state dependency, indicating that dopamine functions in state-dependent adaptation in C. elegans.  相似文献   

8.
It is well known that even under identical task conditions, there is a tremendous amount of trial-to-trial variability in both brain activity and behavioral output. Thus far the vast majority of event-related potential (ERP) studies investigating the relationship between trial-to-trial fluctuations in brain activity and behavioral performance have only tested a monotonic relationship between them. However, it was recently found that across-trial variability can correlate with behavioral performance independent of trial-averaged activity. This finding predicts a U- or inverted-U- shaped relationship between trial-to-trial brain activity and behavioral output, depending on whether larger brain variability is associated with better or worse behavior, respectively. Using a visual stimulus detection task, we provide evidence from human electrocorticography (ECoG) for an inverted-U brain-behavior relationship: When the raw fluctuation in broadband ECoG activity is closer to the across-trial mean, hit rate is higher and reaction times faster. Importantly, we show that this relationship is present not only in the post-stimulus task-evoked brain activity, but also in the pre-stimulus spontaneous brain activity, suggesting anticipatory brain dynamics. Our findings are consistent with the presence of stochastic noise in the brain. They further support attractor network theories, which postulate that the brain settles into a more confined state space under task performance, and proximity to the targeted trajectory is associated with better performance.  相似文献   

9.
The time constant of movement detectors in the fly visual system has been proposed to adapt in response to moving stimuli (de Ruyter van Steveninck et al. 1986). The objective of the present study is to analyse, whether this adaptation can be induced as well, if the luminance of a stationary uniform field is modulated in time. The experiments were done on motion-sensitive wide-field neurones of the lobula plate, the posterior part of the third visual ganglion of the blowfly, calliphora erythrocephala. These cells are assumed to receive input from large retinotopic arrays of movement detectors. In order to demonstrate that our results concern the properties of the movement detectors rather than those of a particular wide-field cell we recorded from two different types of them, the H1- and the HSE-cell. Both cell types respond to a brief movement stimulus in their preferred direction with a transient excitation. This response decays about exponentially. The time constant of this decay reflects, in a first approximation, the time constant of the presynaptic movement detectors. It was determined after prestimulation of the cell by the following stimuli: (a) periodic stationary grating; (b) uniform field, the intensity of which was modulated sinusoidally in time (flicker stimulation); (c) periodic grating moving front-to-back; (d) periodic grating moving back-to-front. The decay of the response is significantly faster not only after movement but also after flicker stimulation as compared with pre-stimulation with a stationary stimulus. This is interpreted as an adaptation of the movement detector's time constant. The finding that flicker stimulation also leads to an adaptation shows that movement is not necessary for this process. Instead the adaptation of the time constant appears to be governed mainly by the temporal modulation (i.e., contrast frequency) of the signal in each visual channel.  相似文献   

10.
Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP) and Medio-Lateral (ML) direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor), a noise (brown) and a periodic (sine) moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.  相似文献   

11.
Reinforcement learning in neural networks requires a mechanism for exploring new network states in response to a single, nonspecific reward signal. Existing models have introduced synaptic or neuronal noise to drive this exploration. However, those types of noise tend to almost average out—precluding or significantly hindering learning —when coding in neuronal populations or by mean firing rates is considered. Furthermore, careful tuning is required to find the elusive balance between the often conflicting demands of speed and reliability of learning. Here we show that there is in fact no need to rely on intrinsic noise. Instead, ongoing synaptic plasticity triggered by the naturally occurring online sampling of a stimulus out of an entire stimulus set produces enough fluctuations in the synaptic efficacies for successful learning. By combining stimulus sampling with reward attenuation, we demonstrate that a simple Hebbian-like learning rule yields the performance that is very close to that of primates on visuomotor association tasks. In contrast, learning rules based on intrinsic noise (node and weight perturbation) are markedly slower. Furthermore, the performance advantage of our approach persists for more complex tasks and network architectures. We suggest that stimulus sampling and reward attenuation are two key components of a framework by which any single-cell supervised learning rule can be converted into a reinforcement learning rule for networks without requiring any intrinsic noise source. This work was supported by the Swiss National Science Foundation grant K-32K0-118084.  相似文献   

12.
弱噪声对下丘神经元声强敏感性的动态调制   总被引:2,自引:2,他引:2  
Wang D  Pi JH  Tang J  Wu FJ  Chen QC 《生理学报》2005,57(1):59-65
为探讨复杂听环境下行为相关声信号提取的可能机制,研究了弱噪声对下丘(IC)神经元强度.放电率函数(RIF)的影响。实验在9只昆明小鼠(Musmusculus Km)上进行,在自由声场刺激条件下,分别记录短纯音刺激以及同步输出短纯音阂下5dB包络白噪声刺激时IC神经元的RIF,共获112个IC神经元,测量了其中44个神经元在加入噪声前(W/O)后(w)的RIF。以加入噪声前后RIF的声强动力学范围(DR)、斜率、以及不同声刺激强度的放电率抑制百分比变化为指标,比较分析发现:弱噪声对神经元发放率的影响呈三种类型,即抑制(39/44,88.6%)、易化(2/44,4.6%)和无影响(3/44,6.8%),但只有抑制性影响有显著性意义(P<0.001,n=39);弱噪声对阂反应的抑制效应最强,并随纯音强度的增加而逐步减弱(P<0.01301,n=39);此外,弱噪声的抑制作用还使大部分神经元的(31/39,79.5%)DR变窄(P<0.01,,l=31)、RIF的斜率增加(P<0.01,n=31)。上述结果提示,弱噪声参与下丘神经元声强敏感性的动态调制过程。这一观察为人们深入了解自然听环境中声信号提取的中枢机制提供了新认识。  相似文献   

13.
The turning field is defined in the context of klinotaxis as the angular region(s) into which an organism may direct itself at any point in time and space while orienting within a stimulus gradient. The turning field size determines the size distribution of turns an organism can make during klinotaxis. Changes in turning field size affect the efficiency of klinotactic source location as measured by computer simulations of ideal behaviors. The optimal field size lies between 90 and 150 degrees. Turning field size also affects the appearance of search paths made by organisms locating an attractant source. The significance of turning field size is discussed and the described klinotactic model is proposed as a predictive model for orientation research.  相似文献   

14.
The temporal parameters of the perception of radially moving sound sources partly masked with broadband internalized noise at an intensity of 40, 46, or 52 dB above the hearing threshold have been studied. The threshold of sound duration necessary for identifying the direction of movement of the sound source (75% correct answers) increases from 135 ms in silence to 285 ms at all intensities of continuous noise studied. The minimum duration of the stimulus beginning with which a subsequent increase in duration does not increase the number of correct responses is the same (385 ms) under all conditions of stimulus presentation. Broadband noise of any intensity increases the time of response to stimuli in the range of durations studied. At a noise of 52 dB, which is close to the threshold of full masking, the reaction time is not increased significantly compared to its estimation at a noise of 46 dB. The minimum duration of the stimulus has proved to be the stablest temporal parameter of the perception of movement of a sound source. Changes in the temporal parameters of sound perception at noise levels close to the threshold of full masking are discussed.  相似文献   

15.
A set of impulsive transient signals has been synthesized for earphone delivery whose waveform and amplitude spectra, measured at the eardrum, mimic those of sounds arriving from a free-field source. The complete stimulus set forms a "virtual acoustic space" (VAS) for the cat. VAS stimuli are delivered via calibrated earphones sealed into the external meatus in cats under barbiturate anesthesia. Neurons recorded extracellularly in primary (AI) auditory cortex exhibit sensitivity to the direction of sound in VAS. The aggregation of effective sound directions forms a virtual space receptive field (VSRF). At about 20 dB above minimal threshold, VSRFs recorded in otherwise quiet and anechoic space fall into categories based on spatial dimension and location. The size, shape and location of VSRFs remain stable over many hours of recording and are found to be shaped by excitatory and inhibitory interactions of activity arriving from the two ears. Within the VSRF response latency and strength vary systematically with stimulus direction. In an ensemble of such neurons these functional gradients provide information about stimulus direction, which closely accounts for a human listener's spatial acuity. Raising stimulus intensity, introducing continuous background noise or presenting a conditioning stimulus all influence the extent of the VSRF but leave intact the gradient structure of the field. These and other findings suggest that such functional gradients in VSRFs of ensembles of AI neurons are instrumental in coding sound direction and robust enough to overcome interference from competing environmental sounds.  相似文献   

16.
We studied temporal response properties of the H1 neuron by extracellular recording. This neuron is a wide-field movement-sensitive element in the visual system of the blowfly (Calliphora erythrocephala). If the neuron is stimulated with a stepwise pattern displacement in its preferred direction, it responds with a burst of action potentials. By repeating the stimulus step one obtains the average of the step response: a 20ms latency time followed by a sharp increase in average firing rate and a slower decay to the resting activity. We report that the characteristic decay time of the step response depends on the stimulus history. If the stimulus moved prior to the step, the higher the pattern velocity, the faster was the decay of the step response to the resting level. In quantitative terms, for velocities in the range 0.4–100°/s, the decay time-constant varies from 300–10ms and is smaller for higher velocities. The time-constant is only weakly affected by other stimulus parameters such as modulation depth or spatial wavelength, and is set independently in different areas of the visual field where it is tuned to the local velocity. We discuss a possible advantage of this form of adaptation for the processing of visual signals: The performance of the nolinear operations that extract information from the visual input can be optimized by prefiltering signals in the individual visual columns with a time-constant that decreases with stimulus velocity. It will be shown that both the test step response and the response to continuous movement can be described reasonably well by a correlation model with input filters that adapt their time-constants.  相似文献   

17.
Light sensitivity of the central and peripheral parts of the human retina has been studied in an hour exposure to broadband noise of 95 dBA intensity and in an after-effect period. The indices of time threshold of dark adaptation and the visual acuity restoration time at reduced brightness were analysed. Four types of response to acoustic stimulus have been revealed. Correlation between the initial levels of the indices and the character of changes of the functions studied has been established.  相似文献   

18.
Two experiments examined the effect of the presentation of an irregular, moderate intensity auditory stimulus ('noise') on the performance of rats in an operant discrimination task. In Experiment 1, rats first learned to press a lever in the presence of a visual stimulus but not in its absence. Discrimination performance was impaired during subsequent exposure to noise. In Experiment 2, different groups of rats learned the discrimination task under a noise or a no-noise condition. Thereafter, all rats were tested under each noise condition. Discrimination performance was best when the noise condition at test was identical to the noise condition at training. These results were discussed in the framework of arousal, distraction, generalization decrement, and contextual occasion setting. They point to the necessity of using a 2x2 factorial design in human and animal research on noise effects, with noise condition at training (noise present or absent) and noise condition at test (noise present or absent) as factors.  相似文献   

19.
The extent of cutaneous saltation (the illusory displacement of a tap presented to one skin locus by another tap occurring close in time at another locus) was modified by a "preconditioning" stimulus presented prior to and at a site distant from the saltatory test pattern. The 10-sec vibratory preconditioning (PC) stimulus appears to be analogous to inspection figures that "satiate" the perceptual field in experiments on figural aftereffects, producing changes in the perceived size, position, or shape of subsequent stimuli. The direction of displacement of the saltatory phantom was always away from the locus of the prior PC stimulus, consistent with results observed in studies of visual and kinesthetic aftereffects. Th- amount of repulsion and the rate at which the saltatory phantom returned to its initial position depend on the intensity, locus, and number of PC stimuli. As with figural aftereffects, these results resist explanation by peripheral mechanisms such as adaptation.  相似文献   

20.
In response to an air puff stimulus, intact crickets, Gryllus bimaculatus, make an escape almost 180 degrees opposite to the stimulus source. In order to verify our previous hypothesis that a self-stimulation of the wind-sensory system is necessary for a compensational recovery of the escape direction (behavioral compensation) in unilaterally cercus-ablated crickets, we investigated the relationship between the conditions of rearing after a unilateral cercal ablation and the degree of behavioral compensation. A unilaterally cercus-ablated cricket reared in a large cage to permit free locomotion showed a significantly higher degree of recovery of escape direction compared with those reared under restrained conditions in a small glass vial. However, the degree of behavioral compensation in a cricket reared alone in a large cage was smaller than that of crickets reared in a cage of the same size with 5-6 other cercus-ablated crickets. Mutual stimulation possibly increased the extent of locomotion of crickets reared in a group and improved the degree of compensational recovery of the escape direction. To ascertain this, the distance a cricket moved during the recovery period was associated with the degree of compensational change of the escape direction. The result suggests that the degree of compensation of the escape direction clearly depended on the distance walked by the crickets. The compensation seemed not to be caused by other factors such as chemical ones in the case of group rearing because forced locomotion induced by touch stimulation on the body surface was solely effective in improving the escape direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号