首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization of efficiency in the glyoxalase pathway   总被引:2,自引:0,他引:2  
A quantitative kinetic model for the glutathione-dependent conversion of methylglyoxal to D-lactate in mammalian erythrocytes has been formulated, on the basis of the measured or calculated rate and equilibrium constants associated with (a) the hydration of methylglyoxal, (b) the specific base catalyzed formation of glutathione-(R,S)-methylglyoxal thiohemiacetals, (c) the glyoxalase I catalyzed conversion of the diastereotopic thiohemiacetals to (S)-D-lactoylglutathione, and (d) the glyoxalase II catalyzed hydrolysis of (S)-D-lactoylglutathione to form D-lactate and glutathione. The model exhibits the following properties under conditions where substrate concentrations are small in comparison to the Km values for the glyoxalase enzymes: The overall rate of conversion of methylglyoxal to D-lactate is primarily limited by the rate of formation of the diastereotopic thiohemiacetals. The hydration of methylglyoxal is kinetically unimportant, since the apparent rate constant for hydration is (approximately 500-10(3))-fold smaller than that for formation of the thiohemiacetals. The rate of conversion of methylglyoxal to (S)-D-lactoylglutathione is near optimal, on the basis that the apparent rate constant for the glyoxalase I reaction (kcatEt/Km congruent to 4-20 s-1 for pig, rat, and human erythrocytes) is roughly equal to the apparent rate constant for decomposition of the thiohemiacetals to form glutathione and methylglyoxal [k(obsd) = 11 s-1, pH 7]. The capacity of glyoxalase I to use both diastereotopic thiohemiacetals, versus only one of the diastereomers, as substrates represents a 3- to 6-fold advantage in the steady-state rate of conversion of the diastereomers to (S)-D-lactoylglutathione.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Glyoxalase I operates on a mixture of rapidly interconverting diasteriomeric thiohemiacetals, formed in a preequilibrium step between glutathione and alpha-ketoaldehyde. That both diasteriomers are directly used as substrates by the enzyme from yeast and from porcine erythrocytes is an outcome of a series of isotope-trapping experiments in which pulse solutions composed of the two diasteriomeric thiohemiacetals, due to [3H]glutathione and phenylglyoxal, are rapidly mixed with chase solutions containing excess unlabeled glutathione and successively increasing concentrations of glyoxalase I. As the enzyme approaches infinite concentration in the chase solution, the radioactivity incorporated into the S-mandeloylglutathione product approaches 100% of the total radioactivity due to both diasteriomers from the pulse solution. The special properties of the active site that allow the enzyme to accommodate both diasteriomeric substrate forms may also account for the fact that the cis and the trans isomers of various para-substituted S-(phenylethenyl)glutathione derivatives are both strong competitive inhibitors of the enzyme. A catalytic mechanism is proposed for glyoxalase I involving catalyzed interconversion of the bound diasteriomeric thiohemiacetals before transformation to final product.  相似文献   

3.
In principle, competitive inhibitors of glyoxalase I that also serve as substrates for the thioester hydrolase glyoxalase II might function as tumor-selective anti-cancer agents, given the role of these enzymes in removing cytotoxic methylglyoxal from cells and the observation that glyoxalase II activity is abnormally low in some types of cancer cells. In support of the feasibility of this anticancer strategy, an inhibitor of this type has been synthesized by a thioester-interchange reaction between glutathione and N-hydroxy-N-methylcarbamate 4-chlorophenyl ester to give S-(N-hydroxy-N-methylcarbamoyl)glutathione (1). This compound was designed to be a tight-binding inhibitor of glyoxalase I, on the basis of its stereoelectronic similarity to the enediol(ate) intermediate that forms along the reaction pathway of this enzyme. Indeed, 1 is a competitive inhibitor of yeast glyoxalase I, with an inhibition constant (Ki = 68 microM) that is approximately 30-fold lower than that reported for S-D-lactoylglutathione and approximately 7-fold lower than the Km for glutathione-methylglyoxal thiohemiacetal. In addition, 1 is a substrate for bovine liver glyoxalase II, with a Km (0.48 mM) approximately equal to that of the normal substrate S-D-lactoyglutathione and a kcat approximately 2 x 10(-5)-fold that of the normal substrate. Membrane transport studies show that 1 can be delivered into human erythrocytes (used here as a model cell) either by direct diffusion of 1 across the cell membrane or by more rapid diffusion of the glycylethyl ester of 1 across the cell membrane, followed by the catalyzed hydrolysis of the ester to give 1.  相似文献   

4.
The proposed rate-limiting step of the reaction catalyzed by glyoxalase I is the proton abstraction from the C1 carbon atom of the substrate by a glutamate residue, resulting in a high-energy enolate intermediate. This proton transfer reaction was modelled using molecular dynamics and free energy perturbation simulations, with the empirical valence bond method describing the potential energy surface of the system. The calculated rate constant for the reaction is approximately 300-1500 s(-1) with Zn2+, Mg2+ or Ca2+ bound to the active site, which agrees well with observed kinetics of the enzyme. Furthermore, the results imply that the origin of the catalytic rate enhancement is mainly associated with enolate stabilization by the metal ion.  相似文献   

5.
Recent findings associate the control of stereochemistry in lipoxygenase (LOX) catalysis with a conserved active site alanine for S configuration hydroperoxide products, or a corresponding glycine for R stereoconfiguration. To further elucidate the mechanistic basis for this stereocontrol we compared the stereoselectivity of the initiating hydrogen abstraction in soybean LOX-1 and an Ala542Gly mutant that converts linoleic acid to both 13S and 9R configuration hydroperoxide products. Using 11R-(3)H- and 11S-(3)H-labeled linoleic acid substrates to examine the initial hydrogen abstraction, we found that all the primary hydroperoxide products were formed with an identical and highly stereoselective pro-S hydrogen abstraction from C-11 of the substrate (97-99% pro-S-selective). This strongly suggests that 9R and 13S oxygenations occur with the same binding orientation of substrate in the active site, and as the equivalent 9R and 13S products were formed from a bulky ester derivative (1-palmitoyl-2-linoleoylphosphatidylcholine), one can infer that the orientation is tail-first. Both the EPR spectrum and the reaction kinetics were altered by the R product-inducing Ala-Gly mutation, indicating a substantial influence of this Ala-Gly substitution extending to the environment of the active site iron. To examine also the reversed orientation of substrate binding, we studied oxygenation of the 15S-hydroperoxide of arachidonic acid by the Ala542Gly mutant soybean LOX-1. In addition to the usual 5S, 15S- and 8S, 15S-dihydroperoxides, a new product was formed and identified by high-performance liquid chromatography, UV, gas chromatography-mass spectrometry, and NMR as 9R, 15S-dihydroperoxyeicosa-5Z,7E,11Z,13E-tetraenoic acid, the R configuration "partner" of the normal 5S,15S product. This provides evidence that both tail-first and carboxylate end-first binding of substrate can be associated with S or R partnerships in product formation in the same active site.  相似文献   

6.
D-Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most abundant enzyme, is the paradigm member of the recently recognized mechanistically diverse RuBisCO superfamily. The RuBisCO reaction is initiated by abstraction of the proton from C3 of the d-ribulose 1,5-bisphosphate substrate by a carbamate oxygen of carboxylated Lys 201 (spinach enzyme). Heterofunctional homologues of RuBisCO found in species of Bacilli catalyze the tautomerization ("enolization") of 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) in the methionine salvage pathway in which 5-methylthio-d-ribose (MTR) derived from 5'-methylthioadenosine is converted to methionine [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO, Science 302, 286-290]. The reaction catalyzed by this "enolase" is accomplished by abstraction of a proton from C1 of the DK-MTP 1-P substrate to form the tautomerized product, a conjugated enol. Because the RuBisCO- and "enolase"-catalyzed reactions differ in the regiochemistry of proton abstraction but are expected to share stabilization of an enolate anion intermediate by coordination to an active site Mg2+, we sought to establish structure-function relationships for the "enolase" reaction so that the structural basis for the functional diversity could be established. We determined the stereochemical course of the reaction catalyzed by the "enolases" from Bacillus subtilis and Geobacillus kaustophilus. Using stereospecifically deuterated samples of an alternate substrate derived from d-ribose (5-OH group instead of the 5-methylthio group in MTR) as well as of the natural DK-MTP 1-P substrate, we determined that the "enolase"-catalyzed reaction involves abstraction of the 1-proS proton. We also determined the structure of the activated "enolase" from G. kaustophilus (carboxylated on Lys 173) liganded with Mg2+ and 2,3-diketohexane 1-phosphate, a stable alternate substrate. The stereospecificity of proton abstraction restricts the location of the general base to the N-terminal alpha+beta domain instead of the C-terminal (beta/alpha)8-barrel domain that contains the carboxylated Lys 173. Lys 98 in the N-terminal domain, conserved in all "enolases", is positioned to abstract the 1-proS proton. Consistent with this proposed function, the K98A mutant of the G. kaustophilus "enolase" is unable to catalyze the "enolase" reaction. Thus, we conclude that this functionally divergent member of the RuBisCO superfamily uses the same structural strategy as RuBisCO for stabilizing the enolate anion intermediate, i.e., coordination to an essential Mg2+, but the proton abstraction is catalyzed by a different general base.  相似文献   

7.
Copper amine oxidases (EC 1.4.3.6) exhibit atypical stereochemical patterns in the reactions they catalyze. Dopamine and tyramine are oxidized with abstraction of the pro-R hydrogen by the porcine plasma amine oxidase, the pro-S hydrogen by pea seedling amine oxidase and a net nonstereospecific proton abstraction by the bovine plasma enzyme. This provides the first example in which a reaction catalyzed by enzymes in the same formal class occurs by all three possible stereochemical routes. To assess the underlying mechanistic significance of this heterogeneity, we have established the stereochemical course of the oxidation of tyramine by five additional copper amine oxidases using 1H NMR spectroscopy. Reactions catalyzed by rabbit and sheep serum amine oxidases are nonstereospecific. These enzymes exhibit rare mirror image binding with differential flux through two opposite and stereospecific reaction pathways. Differential primary kinetic isotope effects are observed for each mode, 8 and 4.6 for pro-S abstraction and 2.6 and 2.7 for pro-R abstraction by the sheep and rabbit amine oxidases, respectively. Tyramine oxidations catalyzed by the soybean and chick pea amine oxidases and porcine kidney diamine oxidase, however, are all stereospecific, occurring with loss of the pro-S hydrogen at C-1. Solvent exchange profiles are consistent within each stereochemical class of enzyme; the pro-R and nonstereospecific enzymes exchange solvent into C-2 of product aldehydes, the pro-S enzymes do not.  相似文献   

8.
The kinetics of glyoxalase I [(R)-S-lactoylglutathione methylglyoxal-lyase; EC 4.4.1.5] and glyoxalase II (S-2-hydroxyacylglutathione hydrolase; EC 3.1.2.6) from Saccharomyces cerevisiae was studied in situ, in digitonin permeabilized cells, using two different approaches: initial rate analysis and progress curves analysis. Initial rate analysis was performed by hyperbolic regression of initial rates using the program HYPERFIT. Glyoxalase I exhibited saturation kinetics on 0.05-2.5 mM hemithioacetal concentration range, with kinetic parameters Km 0.53 +/- 0.07 mM and V (3.18 +/- 0.16) x 10(-2) mM.min(-1). Glyoxalase II also showed saturation kinetics in the SD-lactoylglutathione concentration range of 0.15-3 mM and Km 0.32 +/- 0.13 mM and V (1.03 +/- 0.10) x 10(-3) mM.min(-1) were obtained. The kinetic parameters of both enzymes were also estimated by nonlinear regression of progress curves using the raw absorbance data and integrated differential rate equations with the program GEPASI. Several optimization methods were used to minimize the sum of squares of residuals. The best parameter fit for the glyoxalase I reaction was obtained with a single curve analysis, using the irreversible Michaelis-Menten model. The kinetic parameters obtained, Km 0.62 +/- 0.18 mM and V (2.86 +/- 0.01) x 10(-2) mM.min(-1), were in agreement with those obtained by initial rate analysis. The results obtained for glyoxalase II, using either the irreversible Michaelis-Menten model or a phenomenological reversible hyperbolic model, showed a high correlation of residuals with time and/or high values of standard deviation associated with Km. The possible causes for the discrepancy between data obtained from initial rate analysis and progress curve analysis, for glyoxalase II, are discussed.  相似文献   

9.
The proposed rate-limiting step of the glyoxalase I catalyzed reaction is the proton abstraction from the C1 carbon of the substrate by Glu(172). Here we examine primary kinetic isotope effects and the influence of quantum dynamics on this process by computer simulations. The calculations utilize the empirical valence bond method in combination with the molecular dynamics free energy perturbation technique and path integral simulations. For the enzyme-catalyzed reaction a H/D kinetic isotope effect of 5.0 +/- 1. 3 is predicted in reasonable agreement with the experimental result of about 3. Furthermore, the magnitude of quantum mechanical effects is found to be very similar for the enzyme reaction and the corresponding uncatalyzed process in solution, in agreement with other studies. The problems associated with attaining the required accuracy in order for the present approach to be useful as a diagnostic tool for the study of enzyme reactions are also discussed.  相似文献   

10.
Summary The enzymatic production of S-lactoylglutathione was studied by applying glyoxalase I to glycerol-grown cells of Saccharomyces cerevisiae and Escherichia coli cells dosed with Pseudomonas putida glyoxalase I gene. The glyoxalase I in S. cerevisiae cells was markedly induced when the cells were grown on glycerol. The activity of the enzyme in glycerol-grown cells was more than 20-fold higher compared with that of the glucose-grown cells. By using extracts of glycerol-grown yeast cells, about 5 mmol/1 (2 g/l) of S-lactoylglutathione was produced from 10 mM methylglyoxal and 50 mM glutathione within 1 h. The extracts of E. coli cells carrying a hybrid plasmid pGI423, which contains P. putida glyoxalase I gene, showed approximately 170-fold higher glyoxalase I activity than that of E. coli cells without pGI423. The extracts were used for production of S-lactoylglutathione and, under optimal conditions, about 40 mmol/l (15 g/l) of S-lactoylglutathione was produced from 50 mM methylglyoxal and 100mM glutathione within 1 h.  相似文献   

11.
12.
Yuan H  Gadda G 《Biochemistry》2011,50(5):770-779
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.  相似文献   

13.
γδ-Dioxovalerate as a substrate for the glyoxalase enzyme system   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Crude gammadelta-dioxovalerate was synthesized from laevulinate by two different methods and was purified by Sephadex chromatography. Some analytical reactions of the compound are described. 2. gammadelta-Dioxovalerate is a substrate for glyoxalase I and the GSH derivative formed by this enzyme is hydrolysed by glyoxalase II to form d-alpha-hydroxyglutarate. The K(m) of glyoxalase I for gammadelta-dioxovalerate is 1.0x10(-3)m at pH5.8.3. The u.v.-absorption spectrum of thiol ester, synthesized enzymically from gammadelta-dioxovalerate and GSH by glyoxalase I, is almost identical with that for S-lactoylglutathione. Some optical properties of this thiol ester were measured. 4. Attempts to show reversibility of the glyoxalase system reactions with d-alpha-hydroxyglutarate as substrate were unsuccessful. 5. The possible metabolic role of the gammadelta-dioxovalerate reaction is discussed. It is suggested that one of the metabolic functions of the glyoxalase system may be to provide a mechanism for the entry of this compound into the tricarboxylic acid cycle.  相似文献   

14.
In wild-type bacteriorhodopsin light-induced proton release occurs before uptake at neutral pH. In contrast, in mutants in which R82 is replaced by a neutral residue (as in R82A and R82Q), only a small fraction of the protons is released before proton uptake at neutral pH; the major fraction is released after uptake. In R82Q the relative amounts of the two types of proton release, "early" (preceding proton uptake) and "late" (following proton uptake), are pH dependent. The main conclusions are that 1) R82 is not the normal light-driven proton release group; early proton release can be observed in the R82Q mutant at higher pH values, suggesting that the proton release group has not been eliminated. 2) R82 affects the pKa of the proton release group both in the unphotolyzed state of the pigment and during the photocycle. In the wild type (in 150 mM salt) the pKa of this group decreases from approximately 9.5 in the unphotolyzed pigment to approximately 5.8 in the M intermediate, leading to early proton release at neutral pH. In the R82 mutants the respective values of pKa of the proton release group in the unphotolyzed pigment and in M are approximately 8 and 7.5 in R82Q (in 1 M salt) and approximately 8 and 6.5 in R82K (in 150 mM KCl). Thus in R82Q the pKa of the proton release group does not decrease enough in the photocycle to allow early proton release from this group at neutral pH. 3) Early proton release in R82Q can be detected as a photocurrent signal that is kinetically distinct from those photocurrents that are due to proton movements from the Schiff base to D85 during M formation and from D96 to the Schiff base during the M-->N transition. 4) In R82Q, at neutral pH, proton uptake from the medium occurs during the formation of O. The proton is released during the O-->bacteriorhodopsin transition, probably from D85 because the normal proton release group cannot deprotonate at this pH. 5) The time constant of early proton release is increased from 85 microseconds in the wild type to 1 ms in R82Q (in 150 mM salt). This can be directly attributed to the increase in the pKa of the proton release group and also explains the uncoupling of proton release from M formation. 6) In the E204Q mutant only late proton release is observed at both neutral and alkaline pH, consistent with the idea that E204 is the proton release group. The proton release is concurrent with the O-->bacteriorhodopsin transition, as in R82Q at neutral pH.  相似文献   

15.
The nature of the binding determinants used in the interaction of glutathione-based derivatives and bovine liver glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6) has been investigated. Linear competitive inhibition was observed for S-blocked and S,N-blocked glutathiones with bovine liver glyoxalase II (molecular weight 22 500 by sodium dodecyl sulphate polyacrylamide gel electrophoresis; pI = 7.48 by analytical isoelectric focussing). There is a significant hydrophobic region on the enzyme to bind substituents around the sulphydryl-derived moiety of the substrate--a hydrophobic S-site. However, there is no evidence for binding of the N-site of the substrate (or inhibitor) to glyoxalase II. In contrast to glyoxalase I, there is no linkage between binding forces used at the S- and N-sites. Binding of S,N-dicarbobenzoxyglutathione is pH-dependent, showing dependence on an ionisation with pKapp approximately equal to 7.2 (binding more tightly at higher pH), as is the kcat value (pKapp approximately equal to 7.8) for S-D-lactoylglutathione.  相似文献   

16.
Although but weak inhibitors of glyoxalase I under steady-state conditions, flavins are reduced by yeast glyoxalase I (lactoyl-glutathione lyase, EC 4.4.1.5) plus its substrate (the hemithiolacetal from glutathione and phenylglyoxal) during catalytic turnover. Studies with 10-ethylisoalloxazine showed that this flavin reduction was peculiar not merely to glyoxalase I's substrate, but was characteristic of the complete system, enzyme plus substrate undergoing catalytic turnover. Flavins are poor hydride-ion acceptors and the reduction observed most likely represents an oxidative trap of a transient carbanion formed in the glyoxalase I mechanism of action. Hydrophobic flavins were more efficient traps than the hydrophilic ones, and values of the Km for the phenylglyoxal: glutathione hemithiolacetal adduct measured by the flavin-reaction and by normal steady-state kinetics were closely similar. This argues that trapping has occurred of an enediolate ion (an enzyme-generated carbanion) still bound to glyoxalase I.  相似文献   

17.
Vick JE  Gerlt JA 《Biochemistry》2007,46(50):14589-14597
The molecular details of the processes involved in divergent evolution of "new" enzymatic functions are ill-defined. Likely starting points are either a progenitor promiscuous for the new reaction or a progenitor capable of catalyzing the new reaction following a single substitution that results from a single base change. However, the molecular (sequence) pathway by which the selective advantage provided by this protein can be improved and ultimately optimized is unclear. In the mechanistically diverse enolase superfamily, we discovered that a monofunctional progenitor could acquire the ability to catalyze a "new" reaction by a single base change: the D297G mutant of the monofunctional l-Ala-d/l-Glu epimerase (AEE) from Escherichia coli catalyzed a low level of the o-succinylbenzoate synthase (OSBS) reaction as well as a reduced level of the AEE reaction [Schmidt, D. M. Z., Mundorff, E. C., Dojka, M., Bermudez, E., Ness, J. E., Govindarajan, S., Babbitt, P. C., Minshull, J., and Gerlt, J. A. (2003) Biochemistry 42, 8387-8393]. We then discovered that the selective advantage and OSBS activity of the D297G mutant are both enhanced by the I19F substitution [Vick, J. E., Schmidt, D. M. Z., and Gerlt, J. A. (2005) Biochemistry 44, 11722-11729]. Both the D297G and I19F substitutions are positioned to alter the substrate specificity so that the substrate for the OSBS reaction is more productively positioned vis a vis the active site catalytic groups. We now report that both the selective advantage and OSBS activity of the D297G/I19F double mutant are enhanced by the R24C (one base change from the wild type Arg codon), R24W (two base changes from the wild type Arg codon and one base change from the R24C codon), and L277W (one base change from the wild type Leu codon) substitutions. The effects of the R24C and L277W mutants are "additive" in the D297G/I19F/R24C/L277W mutant. The greatest selective advantage and OSBS activity are associated with the D297G/I19F/R24W mutant. These "new" substitutions that enhance both the selective advantage and kinetic constants are positioned in the active site where they can alter the specificity, highlighting that the evolution of the "new" OSBS function can be accomplished by changes in substrate specificity.  相似文献   

18.
The human red-blood-cell glyoxalase system was modified by incubation with high concentrations of glucose in vitro. Red-blood-cell suspensions (50%, v/v) were incubated with 5 mM- and 25 mM-glucose to model normal and hyperglycaemic glucose metabolism. There was an increase in the flux of methylglyoxal metabolized to D-lactic acid via the glyoxalase pathway with high glucose concentration. The increase was approximately proportional to initial glucose concentration over the range studied (5-100 mM). The activities of glyoxalase I and glyoxalase II were not significantly changed, but the concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, and the percentage of glucotriose metabolized via the glyoxalase pathway, were significantly increased. The increase in the flux of intermediates metabolized via the glyoxalase pathway during periodic hyperglycaemia may be a biochemical factor involved in the development of chronic clinical complications associated with diabetes mellitus.  相似文献   

19.
The disproportionation of alpha-ketoaldehydes, catalyzed by yeast glyoxalase I, has been reported to involve a random pathway mechanism where one branch utilizes the hemimercaptal of glutathione and the alpha-ketoaldehyde in a one-substrate pathway, and the other branch utilizes first glutathione and then the alpha-ketoaldehyde in an ordered two-substrate pathway. The relative importance of the two pathways has been evaluated at 5 degrees in the pH range 3-7, using methylglyoxal and phenylglyoxal as representative aliphatic and aromatic alpha-ketoaldehydes, by comparing initial rates of hemimercaptal formation in the absence of enzyme with initial rates of product formation in the presence of high enzyme concentrations. If the enzyme is not added last, the initial rates of product formation are the same as the initial rates of adduct formation even under conditions where it could be shown that dehydration of the hydrated alpha-ketoaldehyde is not entirely rate determining. If the enzyme is added after hemimercaptal formation, there is a "burst" of product formation equivalent to the amount of hemimercaptal, followed by a slower reaction, consistent with the one-substrate pathway. Additional support for this pathway was obtained from a study of the effects of added thiol reagents on the "burst" kinetics. The broad specificity of yeast glyoxalase I for both aliphatic and aromatic alpha-ketoaldehydes, reflected in Vmax values which are insensitive to the nature of the alpha-ketoaldehyde drops abruptly if the side chain of the alpha-ketoaldehyde is sterically crowded. The hemimercaptal of tert-butylglyoxal has a Vmax 300-fold smaller than Vmax for methylglyoxal; 2,4,6-trimethylphenylglyoxal is essentially inactive as a substrate even though the closely related compound 2,4-dimethylphenylglyoxal is a normal substrate. Analysis of the Vmax and Km (or Ki) values of these alpha-ketoaldehydes suggests that sterically crowded side chains affect both enzyme-substrate formation and the catalytic reaction.  相似文献   

20.
The active site residue Asn-437 in protein R1 of the Escherichia coli ribonucleotide reductase makes a hydrogen bond to the 2'-OH group of the substrate. To elucidate its role(s) during catalysis, Asn-437 was engineered by site-directed mutagenesis to several other side chains (Ala, Ser, Asp, Gln). All mutant proteins were incapable of enzymatic turnover but promoted rapid protein R2 tyrosyl radical decay in the presence of the k(cat) inhibitor 2'-azido-2'-deoxy-CDP with similar decay rate constants as the wild-type R1. These results show that all Asn-437 mutants can perform 3'-H abstraction, the first substrate-related step in the reaction mechanism. The most interesting observation was that three of the mutant proteins (N437A/S/D) behaved as suicidal enzymes by catalyzing a rapid tyrosyl radical decay also in reaction mixtures containing the natural substrate CDP. The suicidal CDP-dependent reaction was interpreted to suggest elimination of the substrate's protonated 2'-OH group in the form of water, a step that has been proposed to drive the 3'-H abstraction step. A furanone-related chromophore was formed in the N437D reaction, which is indicative of stalling of the reaction mechanism at the reduction step. We conclude that Asn-437 is essential for catalysis but not for 3'-H abstraction. We propose that the suicidal N437A, N437S, and N437D mutants can also catalyze the water elimination step, whereas the inert N437Q mutant cannot. Our results suggest that Asn-437, apart from hydrogen bonding to the substrate, also participates in the reduction steps of catalysis by class I ribonucleotide reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号