首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure sequence for the complete post-fertilization development is described in Cryptopleura ruprechtiana (C. Agardh) Kylin, a member of the Delesseriaceae. Following fertilization the diploid nucleus is transferred to the auxiliary cell. This contains typical red algal proplastids, cytoplasmic concentric membranes, numerous small vacuoles and lipid bodies. Crystalline inclusions and virus-like particles are also present. In addition darkly staining spherical masses possibly represent dehydrated haploid chromatin. The multinucleate auxiliary cell produces initially one large gonimoblast initial and subsequently many smaller gonimoblast initials. The first formed generative gonimoblast cell is similar in cellular structure to the auxiliary cell. Gonimoblast initials are uninucleate but through caryokinesis they become multinucleate. They undergo repeated cleavage to form more gonimoblast cells. Subsequent, centripetal cytokinesis results in the formation of clusters of gonimoblast cells. A new type structural cap or association is observed in the septal plugs that interconnect gonimoblast initials. Terminal or generative gonimoblast cells cleave to form additional gonimoblast cells. Only terminal gonimoblast cells are differentiated to carpospores.  相似文献   

2.
The ultrastructure of carposporophyte development is described for the red alga Gloiosiphonia verticillaris Farl. The auxiliary cell produces gonimoblast initials, which divide to produce two types of gonimoblast cells—the nondividing vacuolate cells and terminal generative gonimoblast cells. The generative gonimoblast cells form clusters of carpospore initials, which eventually differentiate into carpospores. After gonimoblast filaments are formed, the auxiliary cell undergoes autolysis, causing degeneration of septal plugs between the auxiliary cell and adjacent cells, thus forming a fusion cell. Since this cell lacks starch and appears degenerate throughout carposporophyte development, a nutritive function cannot be ascribed to the fusion cell. Carpospore differentiation is simple and proceeds through three developmental stages. Young carpospores structurally resemble gonimoblast cells, because they contain undeveloped plastids, large quantities of floridean starch, and are surrounded by extensive mucilage instead of a distinct wall. In addition, dictyosomes form and begin to produce vesicles with fibrous contents representing carpospore wall material. During the intermediate stage, dictyosomes continue to produce vesicles that contribute additional carpospore wall material, thereby compressing the mucilage and creating a darker-staining layer outside the carpospore wall. Plastids form internal thylakoids by invaginations of the inner membrane of the peripheral thylakoid. The endoplasmic reticulum forms large granular vacuoles that appear to be degraded during subsequent stages of development. Mature carpospores form cored vesicles. They also contain mature chloroplasts, large amounts of floridean starch, and occasionally granular vacuoles. During this stage, interconnecting carpospore-carpospore and carpospore-gonimoblast cell septal plugs begin to undergo degeneration. This process may be mediated by tubular structures.  相似文献   

3.
The ultrastructure of post-fertilization development in Nienburgia andersoniana (J. Ag.) Kyl. is described. Above the auxiliary cell there is a group of four sterile cells. The presence of abundant storage products (starch granules, lipid bodies and protein crystals) in these cells indicates that the sterile cells function as nutrient suppliers to the young auxiliary and gonimoblast cells of the carposporophyte during its early steps of development. Following fertilization and transfer of the diploid nucleus to the auxiliary cell, the trichogyne disappears and large multinucleate gonimoblast initials are produced. These subsequently produce generative gonimoblast cells which cleave successively to form young carpospores. Those of the gonimoblast cells which will not differentiate into carpospores are transformed into cells producing mucilage. Both kinds of gonimoblast cells contain plastids, starch granules, cytoplasmic concentric membrane bodies and small vesicles. Dark-staining spherical masses occurring in the cytoplasm of the auxiliary and gonimoblast cells may represent degenerating haploid nuclei. Septal plugs interconnecting the auxiliary cell and gonimoblast cells increase considerably in size during carposporophyte development. The fusion cell at the late stage of carposporophyte development appears degenerative. Young carpospores have plastids and mitochondria, and concentric membrane bodies that will form mucilage sacs. Medium-aged carpospores have fully developed plastids, starch granules and fibrous vacuoles. Mature carpospores possess, in addition, cored vesicles. The inner pericarp cells contribute large amounts of mucilage to the cytostocarpic cavity and eventually are consumed. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 289–299.  相似文献   

4.
The ultrastructure of the carposporophyte and carposporogenesis is described for the parasitic red alga Plocamiocolax pulvinata Setch. After presumed fertilization the zygote nucleus is apparently transferred to the auxiliary cell which initiates gonimoblast cell production. These gonimoblast cells differentiate into storage or generative cells. Storage gonimoblast cells (SGC) are large and multinucleate, contain large quantities of starch and are located nearest the auxiliary cell, when compared to the smaller uninucleate, devoid of starch, generative gonimoblast cells (GGC) that form terminal lobes of carpospores. In addition, compressed membrane bodies and annulate lamellae are common in these cells. During carposporophyte maturation the amount of starch in the SGC's decreases and eventually the auxiliary cell, as well as SGC's, degenerate. Generative gonimoblast cells (GGC's) cleave repeatedly to form carpospores which are interconnected by small pit connections. Stage one-carpospores are recognized by their elongated shape, the formation of small  相似文献   

5.
Leachiella pacifica, gen. et sp. nov., a marine alloparasitic red alga is described from Washington and California. Several species of Polysiphonia and Pterosiphonia are hosts for this parasite. The thallus is a white, multiaxial, unbranched pustule with rhizoidal filaments that ramify between host cells, forming numerous secondary pit connections with host cells. All reproductive structures develop from outer cortical cells. Tetrasporocytes, situated on stalk cells, undergo simultaneous, tetrahedral cleavage to form tetraspores. Spermatia are formed continuously by oblique cleavages of the elongate spermatial generating cells. This results in spermatial clusters consisting of 4–8 spermatia in an alternate arrangement. Carposporophyte development is procarpial. The carpogonium is part of a six-celled branch including a sterile cell that is formed by the basal cell. The carpogonial branch is attached laterally to an obovate supporting cell that also forms an auxiliary cell, presumably formed prior to fertilization. After fertilization the carpogonium temporarily fuses with the auxiliary cell apparently to transfer the diploid nucleus and initiate further fusion with the subtending supporting cell to form an incipient fusion cell. The auxiliary cell portion of this fusion cell divides to form gonimoblast initials that continue to divide, forming gonimoblast filaments whose terminal cells differentiate into carpospores. The remainder of the fusion cell enlarges by continual fusion with adjacent vegetative cells. The resultant carposporophyte consists of a basal, multinucleate fusion cell supporting a hemispherical cluster of gonimoblast filaments with terminally borne carpospores. Vegetatively, Leachiella resembles several other parasitic red algae but it is clearly separated by the procarp, carposporophyte development and structure, and tetrasporocyte cleavage.  相似文献   

6.
Ahnfeltia plicata (Hudson) Fries, the type species of Ahnfeltia Fries, is currently assigned to the Phyllophoraceae (Gigartinales). Several morphological and biochemical characters distance A. plicata from the Phyllophoraceae but, because sexual reproduction has never been demonstrated, an alternative placement has not been possible. A. plicata now is shown to have a heteromorphic sexual life history. Erect branched gametophytes are dioecious. In male sori, spermatangia are cut off transversely from spermatangial mother cells. Female sori form numerous terminal sessile carpogonia. Following fertilization, several zygotes in each sorus fuse facultatively with undifferentiated intercalary cells of the female sorus and cut off gonimoblast initials obliquely outwards. These initials give rise to branching gonimoblast filaments that fuse with apical and intercalary female sorus cells and with each other, then grow radially outward in the compound external carposporophyte and terminate in carposporangia. Carpospores develop in culture into crustose tetrasporophytes identical to Porphyrodiscus simulans Batters. Field-collected P. simulans tetraspores grew into erect A. plicata axes. Tetrasporangia are formed by division and enlargement of crust apical cells followed by sequential enlargement and maturation of tetrasporocytes in an erosive process. Monosporangia are formed in sori on male gametophytes. Pit plugs of both gametophyte and tetrasporophyte phases consist of naked plug cores without cap layers of membranes. Gametophytes exhibit both cell fusions and secondary pit connections whereas tetrasporophytes form cell fusions but lack secondary pit connections. On the basis of the unique female and postfertilization reproductive development and in conjunction with the pit plug structure which is unique among florideophytes, the order Ahnfeltiales, containing the family Ahnfeltiaceae, is proposed.  相似文献   

7.
The ultrastructure of the carposporophyte and carposporogenesis is described for the red alga Scinaia articulata Setch. After fertilization, the trichogyne disappears, and the pericarp develops to form a thick protective tissue that surrounds the carposporophyte. The hypogynous cell cuts off both one-celled and two-celled sterile branches. Patches of chromatin are frequently observed in evaginations of the nuclear envelope, which appear to produce vesicles in the cytoplasm of the cell of the sterile branch. Large gonimoblast lobes extend from the carpogonium and cleave to form gonimoblast initials. Subsequently, a fusion cell is formed from fusions of the carpogonium, the hypogynous cell and the basal cell of the carpogonial branch. The mature carposporophyte comprises the fusion cell that is connected to the sterile branch cells, gonimoblast cells and carpospores and is surrounded by extensive mucilage. Young carpospores possess a large nucleus and proplastids with a peripheral thylakoid, but they have few dictyosomes and starch granules and are indistinguishable from gonimoblast cells. Subsequently, dictyosomes are formed, which produce vesicles with an electron-dense granule, which indicates an initiation of wall deposition. Thylakoid formation coincides with incipient starch granule deposition. The nuclear envelope produces fibrous vacuoles and concentric membrane bodies. Carpospores are interconnected by pit connections with two cap layers. Dictyosome activity increases, resulting in the production of vesicles, which either continue to deposit wall material or coalesce to form fibrous vacuoles. The final stage of carposporogenesis is characterized by the massive production of cored vesicles from curved dictyosomes. Mature carpospores are uninucleate and contain fully developed chloroplasts, numerous cored vesicles, numerous starch granules and fibrous vacuoles. The mature carpospore is surrounded by a wall layer and a separating layer, but a carposporangial wall is lacking.  相似文献   

8.
Gracilaria verrucosa is a very common marine red alga of Greekcoasts. The diploid carposporophyte which develops attachedto the female gametophyte of Gracilaria is described. The immaturecystocarps are very small while the mature ones are globose,ostiolate and are borne profusely all over the surface of thethallus. The earliest observed fusion cell is small and fusesprogressively with adjacent vegetative cells to form a largemultinucleate cell. From this fusion cell gonimoblast initialsoriginate, dividing further and giving rise to a large numberof gonimoblast cells. The resultant carposporophyte consistsof a basal-central, multinucleate cell surrounded by a conicalor hemispherical mass of gonimoblast cells. Chains or clustersof successively maturing carpospores are borne from the terminalgonimoblast cells. The liberation of mature carpospores takesplace through the ostiole of the cystocarp. The liberated carposporeslack cell walls and are naked in a mucilage mass. Gracilaria verrucosa (Hudson) Papenfuss, Gigartinales, Gracilariaceae, Rhodophyta, carposporophyte, development  相似文献   

9.
The ultrastructure of carposporogenesis for Erythrocystis saccata is described. The fusion and gonimoblast cells contain few organelles, and chloroplasts are in a proplastid state, with pit plugs between gonimoblast cells dissolving early in development. Carpospore development may be separated into 3 stages, the first stage being characterized by the appearance of straight-profiled dictyosomes, fibrous vesicles, and an increase of discoid thylakoids within the chloroplasts. During the second, stage the dictyosomes assume a curved profile and striped vesicles are formed by the endoplasmic reticulum. The third stage is initiated by the disappearance of striped vesicles and the appearance of straight-profiled dictyosomes secreting vesicles with cores. Mature carpospores consist of many cored vesicles, fibrous vesicles, and floridean starch grains. A single wall layer surrounds each carpospore since the carposporangial wall becomes incorporated into a mucilaginous matrix surrounding the spores.  相似文献   

10.
The ultrastructure of the early stages of carposporophyte development in the marine red algaChondria tenuissima has been studied. The diploid carposporophyte grows on the gametophyte. Apical gonimoblast cells develop into diploid carpospores. The basal gonimoblast cells cease to divide and undergo considerable cytoplasmic changes before they become incorporated into the expanding fusion cell. Nucleus and plastids degenerate gradually, while mitochondria remain intact. The smooth endoplasmic reticulum becomes prominent, it seems to produce small vesicles with electron dense contents. Simultaneously, numerous mucilage sacs are formed, presumably from dilating ER cisternae. The contents of the mucilage sacs are secreted by exocytosis. The pit connections between gonimoblast cells flare out. They remain as isolated bodies without connection to a wall after fusion. Secondary pit connections occur between vegetative gametophyte cells and sterile carposporophyte cells. There are three different morphological types of pit connections.  相似文献   

11.
Carpospore differentiation in Faucheocolax attenuata Setch. can be separated into three developmental stages. Immediately after cleaving from the multinucleate gonimoblast cell, young carpospores are embedded within confluent mucilage produced by gonimoblast cells. These carpospores contain a large nucleus, few starch grains, concentric lamellae, as well as proplastids with a peripheral thylakoid and occasionally some internal (photosynthetic) thylakoids. Proplastids also contain concentric lamellar bodies. Mucilage with a reticulate fibrous substructure is formed within cytoplasmic concentric membranes, thus giving rise to mucilage sacs. Subsequently, these mucilage sacs release their contents, forming an initial reticulate deposition of carpospore wall material. Dictyosome vesicles with large, single dark-staining granules also contribute to wall formation and may create a separating layer between the mucilage and carpospore wall. During the latter stages of young carpospores, starch is polymerized in the perinuclear cytoplasmic area and is in close contact with endoplasmic reticulum. Intermediate-aged carpospores continue their starch polymerization. Dictyosomes deposit more wall material, in addition to forming fibrous vacuoles. Proplastids form thylakoids from concentric lamellar bodies. Mature carpospores are surrounded by a two-layered carpospore wall. Cytoplasmic constituents include large floridean starch granules, peripheral fibrous vacuoles, mature chloroplasts and curved dictyosomes that produce cored vesicles which in turn are transformed into adhesive vesicles. Pit connections remain intact between carpospores but begin to degenerate. This degeneration appears to be mediated by microtubules.  相似文献   

12.
Two members of the family Nemastomataceae (Gigartinales, Rhodophyta) are described from subtidal habitats in Ghana. Nemastoma confusum sp. nov. is a plant of irregularly lobed, thick gelatinous blades with subacute marginal projections and surface proliferations. It is composed of a lax medulla and submoniliform cortical filaments with prominent intercalary gland cells. Carposporophytes are one to three spherical lobes of carposporangia borne on gonimoblast initials arising directly from auxiliary cells contacted by connecting filaments. A rudimentary involucre is formed around the gonimoblast by elongating vegetative cortical cells borne on the auxiliary cell. The genus Predaea is recorded for the first time from Africa, and P. feldmannii Boerg. is described in morphological detail together with some observations on its ecology in Ghana. Distinctive features of connecting filament formation, nutritive cell production and gonimoblast initiation and development are illustrated and compared to other species of the genus. A second species, P. masonii (Setch. & Gardn.) De Toni fil., is represented by a single specimen in the collections and appears to be distinct from P. feldmannii on cortical and gland cell features.  相似文献   

13.
Traditional studies suggest that the Kallymeniaceae can be divided into two major groups, a nonprocarpic Kallymenia group, in which carposporophyte formation involves an auxiliary cell branch system separate from the carpogonial branch system, and a procarpic Callophyllis group, in which the carpogonial branch system gives rise to the carposporophyte directly after fertilization. Based on our phylogenetic studies and unpublished observations, the two groups each contain both procarpic and nonprocarpic genera. Here, we describe a new method of reproductive development in Callophyllis concepcionensis Arakaki, Alveal et Ramírez from Chile. The carpogonial branch system consists of a supporting cell bearing both a three‐celled carpogonial branch with trichogyne and two‐lobed “subsidiary” cells. After fertilization, large numbers of secondary subcortical and medullary cells are produced. Lobes of the carpogonial branch system cut off connecting cells containing enlarged, presumably diploid nuclei that fuse with these secondary vegetative cells and deposit their nuclei. Derivative enlarged nuclei are transferred from one vegetative cell to another, which ultimately cut off gonimoblast initials that form filaments that surround the central primary medullary cells and produce carposporangia. The repeated involvement of vegetative cells in gonimoblast formation is a new observation, not only in Callophyllis, but in red algae generally. These results call for a revised classification of the Kallymeniaceae based on new morphological and molecular studies.  相似文献   

14.
Examination of the reproductive morphology of the adelphoparasitic red alga Gardneriella tuberifera Kylin reveals that this monotypic genus is correctly placed in the family Solieriaceae (Gigartinales), to which its host Agardhiella gaudichaudii (Montagne) Silva et Papenfuss also belongs. Gardneriella is multiaxial, nonprocarpic and has an inwardly directed, three-celled carpogonial branch. The large, reniform uninucleate auxiliary cell is distinct prior to and after fertilization. It is diploidized by an unbranched, multicellular connecting filament which lacks pit connections. One or two connecting filaments arise from each fertilized carpogonium. From the diploidized auxiliary cell, the gonimoblast initial is cut off obliquely toward the interior of the thallus. The cells of the gonimoblast fuse with adjacent unpigmented vegetative cells of Gardneriella and pigmented cells of the host. These cells become incorporated into the developing cystocarp and, from those of Gardneriella, additional short chains of gonimoblast cells arise. The mature cystocarp is placentate, radiately lobed, and lacks a surrounding involucre. Carposporangia are borne in short chains and the unpigmented carpospores are released upon the dissolution of outer vegetative cells. No ostiole is present. Gardneriella appears to be most closely related to the placentate solieriacean genera Agardhiella, Sarcodiotheca, and Meristiella and therefore this genus should be placed in the tribe recently erected for these taxa, the Agardhielleae.  相似文献   

15.
Solieria chordalis (C. Agardh) J. Agardh and S. tenera (J. Agardh) Wynne et Taylor exhibit multiaxial growth from a cluster of four to eight obconical apical cells. A single periaxial cell is cut off from each axial cell and successive periaxial cells are rotated 120° in a zig-zag pattern along each axial filament. Periaxial cells produce branched, laterally diverging filaments which form the cortex. The medulla is composed of axial cells, elongate cells of lateral filaments, stretched interconnecting cells, and secondary rhizoids. The two species are nonprocarpic. Carpogonial branches are 3-celled, inwardly directed, with a reflexed trichogyne. The auxiliary cell together with associated darkly-staining inner cortical cells form an association, the auxiliary cell complex, that is recognizable prior to diploidization. A single, unbranched, non-septate connecting filament issues from the fertilized carpogonium and fuses with the inner, lateral side of an auxiliary cell. Production of an involucre from surrounding vegetative cells is stimulated and a gonimoblast initial is cut off toward the interior of the thallus which divides to form a compact cluster of gonimoblast cells. A fusion cell is produced through fusion of inner gonimoblast cells with the auxiliary cell that, in turn, fuses progressively with cells of the lateral file bearing the auxiliary cell. Mature cystocarps have terminal carposporangia cut off from gonimoblast cells at the periphery of the fusion cell and are surrounded by an involucre with a distinct ostiole. Tetrasporangia are cut off laterally from surface cortical cells which then cut off one or two additional derivatives toward the outside. A lectotype is designated for Solieria chordalis, but the lectotypification of S. tenera is questioned. We conclude that Solieria is closely related to Rhabdonia and place the Rhabdoniaceae in synonomy with the Solieriaceae.  相似文献   

16.
The mode of division of vegetative cells, formation of spermatangial parent cells, initiation of the carpogonial branch apparatus, and formation of tetrasporangial initials are homologous developmental processes that are documented for the first time in the type species of the economically important family Gracilariaceae, Gracilaria verrucosa (Hudson) Papenfuss from the British Isles. G. verrucosa is characterized by a supporting cell of intercalary origin that bears a 2-celled carpogonial branch flanked by two sterile branches, direct fusion of cells of sterile branches onto the carpogonium, formation of an extensive carpogonial fusion cell through the incorporation of additional gametophytic cells prior to gonimoblast initiation, gonimoblast initials produced from fusion cell lobes, schizogenous development of the cytocarp cavity, inner gonimoblast cells producing tubular nutritive cells that fuse with cells of the pericarp or floor of the cystocarp, absence of cytologically modified tissue in the floor of the cystocarp, and carposporangial initials produced in clusters or irregular chains. Spermatangial parent cells are generated in flaments from intercalary cortical cells that line an intercellular space forming a ‘pit’ or ‘conceptacle’. Tetrasporangial initials are transformed from terminal cells derived through division of an outer cortical cell. Tetrasporangia are cruciately divided. The Gracilariaceae is removed from Gigartinales and transferred to the new order Gracilariales. Their closest living relatives appear to be agarophytes belonging to the Gelidiales and Ahnfeltiales.  相似文献   

17.
Our morphological and molecular studies indicate that species from the southern hemisphere previously placed in Delesseria belong in Paraglossum and that Paraglossum and Apoglossum comprise a separate tribe, the Apoglosseae, S.-W. Lin, Fredericq & Hommersand, trib. nov., within the family Delesseriaceae. From a vegetative perspective the Apoglosseae is readily recognized because some or all fourth-order cell rows are formed on the inner sides of third-order cell rows. All fourth-order cell rows grow adaxially in Apoglossum, whereas both adaxial and abaxial cell rows are present in Paraglossum. Periaxial cells do not divide in Apoglossum, whereas they divide transversely in Paraglossum in the same way as in Delesseria. Major branches are formed mainly from the margins of midribs in the Apoglosseae. The procarp consists of a straight carpogonial branch and two sterile cells, with the second formed on the same side as the first. The carpogonium cuts off two connecting cells in tandem from its apical end, the terminal cell being nonfunctional and the subterminal cell typically fusing with the auxiliary cell. Gonimoblast filaments radiate in all directions from the gonimoblast initials and produce carposporangia terminally in branched chains, with pit connections between the inner gonimoblast cells broadening and enlarging. The auxiliary cell, supporting cell, and sterile cells unite into a fusion cell, which remains small in Apoglossum but incorporates the branched inner gonimoblast filaments and cells in the floor of the cystocarp in Paraglossum. Elongated inner cortical cells seen in mature cystocarps in the Delesserieae are absent in the Apoglosseae. Phylogenetic studies based on rbcL (RuBisCO large subunit gene) sequence analyses strongly support the recognition of the Apoglosseae within the subfamily Delesserioideae of the Delesseriaceae, in agreement with our previous observations based primarily on analyses of large subunit ribosomal DNA (LSU).  相似文献   

18.
Culture and morphological studies showed that Galaxaura oblongata (Ellis et Solander) Lamouroux has a triphasic life history with conspicuous gametophytes and small filamentous tetrasporophytes. Development of male and female reproductive structures is very similar and both begin with the enlargement of a terminal cell of a filament branch occupying a normal vegetative position within the apical pit of a thallus branch. In male thalli this modified branch forms a conceptacle in which spermatangia are produced. In female thalli, this modified branch forms a three-celled carpogonial branch consisting of a carpogonium, hypogynous cell and basal cell. Filament branches from the basal cell form a pericarp and the gonimoblast develops directly from the carpogonium. Carposporangia are produced in conceptacles which resemble the male conceptacles. About the time the first carposporangia are produced, the carpogonium, hypogynous cell and basal cell form a large fusion cell. Released carpospores germinate in a unipolar or bipolar manner and form small filamentous thalli. Under short day conditions, cruciate tetrasporangia are produced in small clusters. Tetraspores germinate similarly to carpospores and also form small filamentous thalli. Under low nutrient conditions, small cylindrical thalli develop on the filaments and these appear similar to gametophytes collected in nature.  相似文献   

19.
The only member of the red algal family Solieriaceae known from New Zealand is the endemic Sarcodiotheca colensoi (Hook. & Harv.) Kylin. This study shows that it differs in several respects from the type S. furcata (Setch. & Gard.) Kylin; thus a new genus Placentophora is created for the New Zealand alga. Although P. colensoi nov. comb. is retained in the Solieriaceae on the basis of vegetative, spermatangial, tetrasporangial, carpogonial-branch and early gonimoblast features, it differs from typical members of that family in its pattern of later carposporophyte development. After a single gonimoblast initial is cut off from the auxiliary cell towards the center of the thallus, further gonimoblasts develop from the initial as ramifying, radiating filaments. These filaments enter an extensive “nutritive-cell” region surrounding the auxiliary cell, form, numerous connections to the “nutritive” cells, and incorporate most of them into a central placenta of interconnected, and variously-fused vegetative and gonimoblast cells. Carpo-sporangia then form in short chains around the periphery of the placenta. The cystocarp lacks both a central fusion cell and a sterile-celled investment, or “Faserhülle.” The distinctive carposporophyte of Placentophora is compared to patterns of gonimoblast development, known in other members of the Solieriaceae.  相似文献   

20.
The development of the carposporophyte of Scinaia pseudojaponica Yamada et Tanaka is described for the first time. The carpogonial branch is 3-celled. Before fertilization the hypogynous cell divides into a group of 4 cells. Concurrently the cell beneath the hypogynous cells also produces initials which, following fertilization, develop into branched filaments that envelop the carposporophyte. After fertilization the gonimoblast initial is produced laterally from the basal part of the carpogonium. Carposporangia are produced in chains from the free ends of the gonimoblast filaments which grow toward the surface of the thyllus. A very thick pericarp surrounds the mature carposporophyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号