首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The mammalian sperm acrosome reaction is a unique form of exocytosis, which includes the loss of the involved membranes. Other laboratories have suggested the involvement of hydrolytic enzymes in somatic cell exocytosis and membrane fusion, and in the invertebrate sperm acrosome reaction, but there is no general agreement on such an involvement. Although reference was made to such work in this review, the focus of the review was on the evidence (summarized below) that supports or fails to support the importance of certain hydrolytic enzymes to the mammalian sperm acrosome reaction. Because the events of capacitation, the prerequisite for the mammalian acrosome reaction, and of the acrosome reaction itself are not fully understood or identified, it is not yet always possible to determine whether the role of a particular enzyme is in a very late step of capacitation or part of the acrosome reaction. (1) The results of studies utilizing inhibitors of trypsin-like enzymes suggest that such an enzyme has a role in the membrane events of the golden hamster sperm acrosome reaction. The enzyme involved may be acrosin, but it is possible that some as yet unidentified trypsin-like enzyme on the sperm surface may play a role in addition to or instead of acrosin. Results obtained by others with guinea pig, ram and mouse spermatozoa suggest that a trypsin-like enzyme is not involved in the membrane events of the acrosome reaction, but only in the loss of acrosomal matrix. Such results, which conflict with those of the hamster study, may have been due to species differences or the presence of fusion-promoting phospholipase-A or lipids contaminating the incubation media components, and in one case to the possibly damaging effects of the high level of calcium ionophore used. The role of the trypsin-like enzyme in the membrane events of the hamster sperm acrosome reaction may be to activate a putative prophospholipase and/or to hydrolyse an outer acrosomal or plasma membrane protein, thus promoting fusion. A possible role of the enzyme in the vesiculation step rather than the fusion step of the acrosome reaction cannot be ruled out at present. (2) Experiments utilizing inhibitors of phospholipase-A2, as well as the fusogenic lysophospholipid and cis-unsaturated fatty acid hydrolysis products that would result from such enzyme activity, suggests that a sperm phospholipase-A2 is involved in the golden hamster sperm acrosome reaction. Inhibitor and LPC addition studies in guinea pig spermatozoa have led others to the same conclusion. The fact that partially purified serum albumin is important in so many capacitation media may be explained by its contamination with phospholipase-A and/or phospholipids. Serum albumin may also play a role, at least in part, by its removal of inhibitory products released by the action of phospholipase-A2 in the membrane. The demonstration of phospholipase-A2 activity associated with the acrosome reaction vesicles and/or the soluble component of the acrosome of hamster spermatozoa, and the fact that exogenous phospholipase A2 can stimulate acrosome reactions in hamster and guinea pig spermatozoa, also support a role for the sperm enzyme. The actual site or the sites of the enzyme in the sperm head are not yet known. The enzyme may be on the plasma membrane as well as, or instead of, in the acrosomal membranes or matrix. A substrate for the phospholipase may be phosphatidylcholine produced by phospholipid methylation. It is possible that more than one type of ‘fusogen’ is released by phospholipase activity (LPC and/or cis-unsaturated fatty acids, which have different roles in membrane fusion and/or vesiculation. In addition to acting as a potential ‘fusogen’, arachidonic acid released by sperm phospholipase-A2 probably serves as precursor for cyclo-oxygenase or lipoxygenase pathway metabolites, such as prostaglandins and HETES, which might also play a role in the acrosome reaction. Although much evidence points to a role for phospholipase-A2, phospholipase-C found in spermatozoa could also have a role in the acrosome reaction, perhaps by stimulating events leading to calcium gating, as suggested for this enzyme in somatic secretory cells. (3) A Mg2+-ATPase H+-pump is present in the acrosome of the golden hamster spermatozoon. Inhibition of this pump by certain inhibitors of ATPases (but not by those that only inhibit mitochondrial function) leads to an acrosome reaction only in capacitated spermatozoa and only in the presence of external K+. The enzyme is also inhibited by low levels of calcium, and such inhibition, combined with increased outer membrane permeability to H+ and K+, and possibly plasma membrane permeability to H+ (perhaps by the formation of channels), may be part of capacitation and/or the acrosome reaction. The pH of the hamster sperm acrosome has been shown to become more alkaline during capacitation, and such a change may result in the activation of hydrolytic enzymes in the acrosome or perhaps in a change in membrane permeability to Ca2+. A similar Mg2+-ATPase has not been found in isolated boar sperm head membranes. However, that conflicting result could have been due to the use of noncapacitated boar spermatozoa for the preparation of the membranes or to protease modification of the boar sperm enzyme during assay. (4) Inhibition of Na+, K+-ATPase inhibits the acrosome reaction of golden hamster spermatozoa, and the activity of this enzyme increases relatively early during capacitation. A late influx of K+ is important for the acrosome reaction. However, this late influx may not be due to Na+, K+-ATPase, but instead may be due to a K+ permeability increase (possibly via newly formed channels) in the membranes during capacitation. It is suggested in this review that Na+, K+-ATPase has a role early in capacitation rather than directly in the acrosome reaction (although such a role cannot yet be completely ruled out). One possible role for the enzyme in capacitation might be to stimulate glycolysis (which appears to be essential for capacitation and/or the acrosome reaction of hamster and mouse spermatozoa). The function of the influx of K+ just before the acrosome reaction is probably to stimulate, directly or indirectly, the H+-efflux required for the increase in intraacrosomal pH occurring during capacitation. Direct stimulation of the acrosome reaction by a change in membrane potential resulting directly from K+-influx is not a likely explanation for the hamster results. However, the importance of an earlier membrane potential change, due to increased Na+, K+-ATPase during capacitation, and/or of later membrane potential changes resulting from the pH change, cannot be ruled out. Although K+ is required for the hamster acrosome reaction, other workers have reported that K+ inhibits guinea pig sperm capacitation. However, the experimental procedures used in the guinea pig sperm studies raise some questions about the interpretation of those inhibition results. (5) Ca2+-influx is known to be required for the acrosome reaction. Others have suggested that increased Ca2+-influx due to inhibition or stimulation of sperm membrane calcium transport ATPases are involved in the acrosome reaction. There is as yet no direct or indirect biochemical evidence that inhibition or stimulation of such enzymatic activity is involved in the acrosome reaction, and further studies are needed on those questions. (6) I suggest that the hydrolytic enzymes important to the hamster sperm acrosome reaction will also prove important for the acrosome reaction of all other eutherian mammals.  相似文献   

2.
The membrane mobility agent A2C accelerates the onset of the acrosome reaction of guinea pig spermatozoa by promoting capacitation. Spermatozoa incubated in a suspension of A2C particles in Ca2+-free medium for one hour undergo a synchronous, rapid acrosome reaction upon the addition of Ca2+. These acrosome-reacted spermatozoa are capable of fertilization as assessed by their ability to penetrate (fuse with) zona-free hamster eggs. The disulfide-reducing agent, dithiothreitol (DTT) inhibits A2C-mediated capacitation. It also blocks fertilization of zone-free eggs by acrosome-reacted spermatozoa by preventing attachment of the spermatozoa to the egg plasma membrane. The mode of A2C action on spermatozoa is compared to that of A2C-induced fusion in somatic cells. The similarity of the molecular events in the sperm membrane during capacitation and the acrosome reaction to these in other fusion events is pointed out. Inhibition of capacitation by DTT points to the importance of membrane and/or submembrane proteins and thiol groups in this process. Oxidation of sperm membrane SH groups may play an important role in in vivo capacitation.  相似文献   

3.
The final modifications that the spermatozoa undergo correspond with the destabilization of their plasma membrane. This indispensable step facilitates the fusion of membranes and primes the signal transduction during fertilization. This destabilization is composed of a series of changes and modulation of the lipids in membranes such as cholestérol, phospholipids and glycolipids. Several differences exist in the lipid composition of the plasma, acrosome, nuclear and mitochondrial membranes of spermatozoa. The principal membrane phospholipids are phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin. Plasma membrane of sperm is also rich in polyunsaturated fatty acids (PUFA) linked to phospholipids. Such as C18∶2n?6, C20∶4n?6 and large amounts of docosahexaenoic acid (C22∶6n?6). The amount of membrane lipids in human sperm varies considerably between patients. This variation, could influence certain functional properties of the sperm cells such as their ability to undergo capacitation, the acrosome reaction and the fusion between sperm and oocyte membranes. The lipid composition of the human sperm cell can be altered during the process of freezing-thawing. A significant decrease in phospholipids (phosphatidyl choline, phosphatidyl ethanolamine), and PUFA in particular docosahexaenoic acid and arachidonic acid was observed. Human spermatozoa have a molar cholestérol/phopholipid ratio ≤1.0, and reduces during capacitation due to loss of cholestérol. In addition, the decrease in the levels of cholestérol and the methylation of phospholipids is involved in the modification of membrane fluidity and in the maturation of the sperm plasma membrane receptors. Therefore it seems that the methylation is important for the fusion between sperm and oocyte membranes. Intrinsic sperm phospholipase A2 also plays a role in the destabilization of the plasma membrane by producing of lysophospholipid. Therefore this enzyme and free fatty acids are believed to play a role in the acrosome reaction, an indispensable event facilitating the fusion between sperm and oocyte membranes.  相似文献   

4.
When guinea pig spermatozoa were preincubated 1 hr in Ca2+-free medium containing dilysocardiolipin (100--125 micrograms/ml) then exposed to Ca2+, the majority underwent an immediate acrosome reaction. Monolysocardiolipin was much less effective and the native cardiolipin was totally ineffective. Some fatty acids added to the medium could also render the spermatozoa capable of undergoing their acrosome reactions, arachidonic acid in methyl ester form being most potent. It is known that sperm membrane contains phospholipase A which cleaves membrane phospholipids into lysophospholipids and fatty acids. Most lysophospholipids are known to be potent acrosome reaction-promoting agents. As some forms of fatty acids are also potent acrosome reaction-promoting agents, both products of membrane phospholipid hydrolysis by phospholipase A (i.e., both fatty acids and lysophospholipids) may work synergistically to effect the conversion of stable sperm membranes to a fusion competent state capable of engaging in the acrosome reaction.  相似文献   

5.
Cholesterol efflux from membranes promotes acrosome reaction in goat spermatozoa. In 1 h of incubation of sperm in the presence of beta-cyclodextrin (beta CD), all the interchangeable cholesterol is desorbed from sperm membranes, although acrosome reaction is fully accomplished only after 3-4 h of incubation, as previously published. In the present paper we investigate the effect of cholesterol removal from mature goat spermatozoa on the overall membrane "fluidity" of live cell membranes and of liposomes from sperm lipid extracts. Using steady state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), we studied the average thermotropic behaviour of membrane lipids, after incubation of live sperm for 1 h in BSA-free medium with the presence/absence of 8 mM beta-cyclodextrin, as a cholesterol acceptor. Unimodal and bimodal theoretical sigmoids fitted best to the experimental thermotropic profiles of liposomes and whole cells, respectively. In the case of whole sperm, two phase transitions, attributable to different lipid domains, were clearly separated by using the fitting parameters. After cholesterol removal, important changes in the relative anisotropy range of the two transitions were found, indicating an increase in the "fluidity" of some of the lipid microdomains of sperm membranes. These changes in sperm lipid dynamics are produced before the onset of sperm acrosome reaction.  相似文献   

6.
Capacitation confers on the spermatozoa the competence to fertilize the oocyte. At the molecular level, a cyclic adenosine monophosphate (cAMP) dependent protein tyrosine phosphorylation pathway operates in capacitated spermatozoa, thus resulting in tyrosine phosphorylation of specific proteins. Identification of these tyrosine‐phosphorylated proteins and their function with respect to hyperactivation and acrosome reaction, would unravel the molecular basis of capacitation. With this in view, 21 phosphotyrosine proteins have been identified in capacitated hamster spermatozoa out of which 11 did not identify with any known sperm protein. So, in the present study attempts have been made to ascertain the role of one of these eleven proteins namely glycerol‐3‐phosphate dehydrogenase 2 (GPD2) in hamster sperm capacitation. GPD2 is phosphorylated only in capacitated hamster spermatozoa and is noncanonically localized in the acrosome and principal piece in human, mouse, rat, and hamster spermatozoa, though in somatic cells it is localized in the mitochondria. This noncanonical localization may imply a role of GPD2 in acrosome reaction and hyperactivation. Further, enzymatic activity of GPD2 during capacitation correlates positively with hyperactivation and acrosome reaction thus demonstrating that GPD2 may be required for sperm capacitation.  相似文献   

7.
Cholesterol efflux from membranes promotes acrosome reaction in goat spermatozoa. In 1 h of incubation of sperm in the presence of beta-cyclodextrin (βCD), all the interchangeable cholesterol is desorbed from sperm membranes, although acrosome reaction is fully accomplished only after 3-4 h of incubation, as previously published. In the present paper we investigate the effect of cholesterol removal from mature goat spermatozoa on the overall membrane “fluidity” of live cell membranes and of liposomes from sperm lipid extracts. Using steady state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), we studied the average thermotropic behaviour of membrane lipids, after incubation of live sperm for 1 h in BSA-free medium with the presence/absence of 8 mM β-cyclodextrin, as a cholesterol acceptor. Unimodal and bimodal theoretical sigmoids fitted best to the experimental thermotropic profiles of liposomes and whole cells, respectively. In the case of whole sperm, two phase transitions, attributable to different lipid domains, were clearly separated by using the fitting parameters. After cholesterol removal, important changes in the relative anisotropy range of the two transitions were found, indicating an increase in the “fluidity” of some of the lipid microdomains of sperm membranes. These changes in sperm lipid dynamics are produced before the onset of sperm acrosome reaction.  相似文献   

8.
When cholesterol is added to sperm membranes before cryopreservation, higher percentages of motile and viable cells are recovered after thawing. However, because one of the first steps in sperm capacitation is cholesterol efflux from the sperm plasma membrane, adding cholesterol to enhance cryosurvival may retard sperm capacitation. These studies evaluated the ability of sperm treated with cholesterol-loaded cyclodextrins (CLC) to capacitate, acrosome react, and fertilize oocytes. Control (non-CLC-treated) and CLC-treated sperm were treated with heparin, dilauroylphosphatidylcholine (PC12), or calcium ionophore A23187 (A23187) to capacitate and induce the acrosome reaction. Sperm capacitation, assessed by an increase in intracellular calcium level, and acrosome-reacted sperm were measured using flow cytometry. Fresh CLC-treated sperm cells underwent capacitation and/or the acrosome reaction at rates different from control samples, and the differences detected were dependent on the method used to induce sperm capacitation and the acrosome reaction. After cryopreservation, however, CLC-treated and control sperm underwent capacitation and the acrosome reaction at similar rates regardless of the method used to induce capacitation and the acrosome reaction. The primary concern for CLC-treated sperm, however, is whether this treatment would affect in vitro or in vivo fertility. Adding either control or CLC-treated cryopreserved sperm to bovine oocytes in vitro resulted in similar oocyte cleavage rates and blastocyst formation rates. In addition, when inseminated into heifers, pregnancy rates for control and CLC-treated sperm were also similar. Therefore, treating bull sperm with CLC permits greater numbers of sperm to survive cryopreservation while preserving the fertilizing potential of each individual sperm.  相似文献   

9.
Ejaculated sperm are unable to fertilize an egg until they undergo capacitation. Capacitation results in the acquisition of hyperactivated motility, changes in the properties of the plasma membrane, including changes in proteins and glycoproteins, and acquisition of the ability to undergo the acrosome reaction. In all mammalian species examined, capacitation requires removal of cholesterol from the plasma membrane and the presence of extracellular Ca2+ and HCO3-. We designed experiments to elucidate the conditions required for in vitro capacitation of rat spermatozoa and the effects of Crisp-1, an epididymal secretory protein, on capacitation. Protein tyrosine phosphorylation, a hallmark of capacitation in sperm of other species, occurs during 5 h of in vitro incubation, and this phosphorylation is dependent upon HCO3-, Ca2+, and the removal of cholesterol from the membrane. Crisp-1, which is added to the sperm surface in the epididymis in vivo, is lost during capacitation, and addition of exogenous Crisp-1 to the incubation medium inhibits tyrosine phosphorylation in a dose-dependent manner, thus inhibiting capacitation and ultimately the acrosome reaction. Inhibition of capacitation by Crisp-1 occurs upstream of the production of cAMP by the sperm.  相似文献   

10.
The surface of spermatozoa plays a critical role in many stages involved in fertilisation. The plasma membrane undergoes important alterations in the male and female reproductive tract, which result in the ability of spermatozoa to fertilise eggs. One of these membrane modifications is sperm capacitation, a process by which sperm interacts with the zona pellucida receptors leading to the acrosome reaction. It has been proposed that the freezing process induces capacitation-like changes to spermatozoa, and that this premature capacitation could explain the reduction in longevity and fertilising capacity of cryopreserved mammalian spermatozoa. Our research focused on the relationship between membrane alterations occurring throughout freezing-thawing and the processes of capacitation and acrosome reaction. We used centrifugal countercurrent distribution (CCCD) analysis to compare the partition behaviour of ram spermatozoa that was either subjected to cold-shock or frozen-thawed with capacitated and acrosome reacted samples. In addition, the effect of the induced acrosome reaction on membrane integrity of ram spermatozoa was studied using biochemical markers and electron microscopy scanning. The CCCD analysis revealed important similarities between the surface characteristics of capacitated and cold-shocked sperm as well as between acrosome-reacted and frozen-thawed sperm. Cold-shocked and capacitated sperm showed an increased cell affinity for the lower dextran-rich phase as well as a decreased heterogeneity. Likewise, the induction of the acrosome reaction resulted in a loss of viability and an important decrease in cell surface heterogeneity compared to the untreated-control sample. Similar surface changes were found when semen samples were frozen with either Fiser or milk-yolk extender. These results confirm those obtained for membrane integrity by fluorescence markers. Thus, the high cell viability value found in the control sample (74.5%) was greatly decreased after cold-shock (22.2%), cryopreservation (26.38% Fiser medium, 24.8% milk-yolk medium) and acrosome reaction (6.6%), although it was preserved after inducing capacitation (46.7%). The study using electron microscopy scanning revealed dramatic structural alterations provoked by the induction of the acrosome reaction.  相似文献   

11.
Sperm capacitation and acrosome reaction are essential for fertilization and they are considered as part of an oxidative process involving superoxide and hydrogen peroxide. In human spermatozoa, the amino acid L-arginine is a substrate for the nitric oxide synthase (NOS) producing nitric oxide (NO*), a reactive molecule that participates in capacitation as well as in acrosome reaction. L-arginine plays an important role in the physiology of spermatozoa and has been shown to enhance their metabolism and maintain their motility. Moreover, L-arginine has a protective effect on spermatozoa against the sperm plasma membrane lipid peroxidation. In this paper, we have presented, for the first time, the effect of L-arginine on cryopreserved bovine sperm capacitation and acrosome reaction and the possible participation of NOS in both processes. Frozen-thawed bovine spermatozoa have been incubated in TALP medium with different concentrations of L-arginine and the percentages of capacitated and acrosome reacted spermatozoa have been determined. L-arginine induced both capacitation and acrosome reaction. NO* produced by L-arginine has been inhibited or inactivated using NOS inhibitors or NO* scavengers in the incubation medium, respectively. Thus, the effect of NOS inhibitors and NO* scavengers in capacitated and non-capacitated spermatozoa treated with L-arginine has also been monitored. The data presented suggest the participation of NO*, produced by a sperm NOS, in cryopreseved bovine sperm capacitation and acrosome reaction.  相似文献   

12.
Cholesterol efflux and membrane destabilization play an important role in sperm capacitation and membrane fusion in the acrosome reaction (AR). In this study we establish the effect of cholesterol removal from spermatozoa on acrosomal responsiveness. Mature goat spermatozoa were incubated in BSA-free medium in the presence of beta-cyclodextrin (betaCD) as cholesterol acceptor. After incubation with 8 mM betaCD, 50-60% of cholesterol was released from sperm membranes with no loss in the phospholipid content, and 35% of AR was induced. However, when 30% of cholesterol was lost, this moderate cholesterol decrease was unable to initiate AR. Cholesterol desorption was very rapid, following an exponential kinetics with a half-time of around 10 min, which is in contrast with the slow sigmoidal kinetics of acrosomal responsiveness: around 2 h was required for maximal AR. Our results suggest that cholesterol efflux has a direct influence on the onset of the AR, that is, merely removing cholesterol would trigger the AR.  相似文献   

13.
In somatic cells, caveolin-1 plays several roles in membrane dynamics, including organization of detergent-insoluble lipid rafts, trafficking of cholesterol, and anchoring of signaling molecules. Events in sperm capacitation and fertilization require similar cellular functions, suggesting a possible role for caveolin-1 in spermatozoa. Immunoblot analysis demonstrated that caveolin-1 was indeed present in developing mouse male germ cells and both mouse and guinea pig spermatozoa. In mature spermatozoa, caveolin-1 was enriched in a Triton X-100-insoluble membrane fraction, as well as in membrane subdomains separable by means of their light buoyant densities through sucrose density gradient centrifugation. These data indicated the presence of membrane rafts enriched in caveolin-1 in spermatozoa. Indirect immunofluorescence analysis revealed caveolin-1 in the regions of the acrosome and flagellum in sperm of both species. Confocal immunofluorescence analysis of developing mouse male germ cells demonstrated partial co-localization with a marker for the acrosome. Furthermore, syntaxin-2, a protein involved in acrosomal exocytosis, was present in both raft and nonraft fractions in mature sperm. Together, these data indicated that sperm membranes possess distinct raft subdomains, and that caveolin-1 localized to regions appropriate for involvement with acrosomal biogenesis and exocytosis, as well as signaling pathways regulating such processes as capacitation and flagellar motility.  相似文献   

14.
After capacitation of guinea pig spermatozoa in vitro, the plasma membrane was mechanically separated from the spermatozoa in the presence or absence of HgCl2 and subsequently isolated by density gradient centrifugation. Examination of the spermatozoa by electron microscopy after homogenization in the presence of HgCl2 revealed that plasma membrane was removed only from the acrosomal region and remained predominately intact posterior to the equatorial segment of the sperm head, as well as the midpiece and tail. In comparison, spermatozoa homogenized under similar buffer conditions but in the absence of HgCl2 lose the large apical segment of the acrosome and the plasma membrane is removed essentially from the entire cell. If spermatozoa were homogenized in the absence of Hg2+, analysis of plasma membrane phospholipid composition revealed a complete loss of lysophosphatidylcholine (LPC) from the plasma membrane after incubation of spermatozoa in minimal capacitating medium (MCM-PL) for 2 hours. Under these culture conditions the addition of Ca2+ (5 mM) to the capacitated spermatozoa induced approximately 78 ± 5% (n = 3) of the motile spermatozoa to undergo acrosome reactions while still maintaining sperm motility (80 ± 5%) (n = 3). If the spermatozoa were homogenized in the presence of Hg2+, a time course study revealed that plasma membrane LPC loss occurred between 60 and 90 minutes of incubation. This complete loss of LPC was evident when approximately half of the capacitated spermatozoa had undergone acrosome reactions. Incubation of the spermatozoa with the metabolic and acrosome reaction inhibitor, 2-deoxyglucose (10 mM) for 2 hours, maintained the plasma membrane phospholipid composition similar to that in the noncapacitated state. These data provide evidence that changes in the plasma membrane phospholipid composition may be associated with guinea pig sperm capacitation.  相似文献   

15.
Ejaculated spermatozoa must undergo physiological priming as they traverse the female reproductive tract before they can bind to the egg’s extracellular coat, the zona pellucida (ZP), undergo the acrosome reaction, and fertilize the egg. The preparatory changes are the net result of a series of biochemical and functional modifications collectively referred to as capacitation. Accumulated evidence suggests that the event that initiates capacitation is the efflux of cholesterol from the sperm plasma membrane (PM). The efflux increases permeability and fluidity of the sperm PM and causes influx of Ca2+ ions that starts a signaling cascade and result in sperm capacitation. The binding of capacitated spermatozoa to ZP further elevates intrasperm Ca2+ and starts a new signaling cascade which open up Ca2+ channels in the sperm PM and outer acrosomal membrane (OAM) and cause the sperm to undergo acrosomal exocytosis. The hydrolytic action of the acrosomal enzymes released at the site of sperm-egg (zona) binding, along with the hyperactivated beat pattern of the bound spermatozoon, are important factors in directing the sperm to penetrate the ZP and fertilize the egg. The role of Ca2+-signaling in sperm capacitation and induction of the acrosome reaction (acrosomal exocytosis) has been of wide interest. However, the precise mechanism(s) of its action remains elusive. In this article, we intend to highlight data from this and other laboratories on Ca2+ signaling cascades that regulate sperm functions.  相似文献   

16.
The effects of lipids on the survival, acrosome reaction, and fertilizing capacity of guinea pig spermatozoa were studied by incubating the spermatozoa in media containing various concentrations of the lipids. Lipids tested were: phosphatidyl-choline (PC), -ethanolamine (PE), -inositol (PI), -serine (PS), sphingomyelin (S), cholesterol (C), lysophosphatidyl-choline (LC), -ethanolamine (LE), -inositol (LI), -serine (LS), and glyceryl monooleate (M). When spermatozoa were incubated in a regular medium (containing 2 mM Ca2+) with M, the majority underwent the acrosome reaction within 1 hour. None of the other lipids were as effective as M, and some were totally ineffective under the same conditions. However, when spermatozoa were preincubated in Ca2+-free medium containing LC, LE, or LI, they gained the ability to undergo the acrosome reaction. One hour of preincubation in Ca2+-free medium with LC, LE, or LI was enough to render the vast majority of spermatozoa capable of undergoing the acrosome reaction in response to Ca2+. The optimum concentrations for LC, LE, and LI were approximately 85 μg/ml, 210 μg/ml, and 140 μg/ml, respectively. Spermatozoa that had undergone the acrosome reaction by pretreatment with LC, LE, or LI remained actively motile and were capable of fertilizing eggs. LS was totally ineffective in rendering the spermatozoa capable of undergoing the acrosome reaction, and in fact it inhibited the acrosome reaction by itself and also inhibited the LC-, LE-, or LI-mediated acrosome reaction. LS did not prevent acrosome-reacted spermatozoa from penetrating the zona pellucida, but did prevent sperm-egg fusion. Based on these findings, it is suggested that lysophospholipids are intricately involved in the sperm acrosome reaction and perhaps in sperm-egg fusion.  相似文献   

17.
Signaling pathways in sperm capacitation and acrosome reaction.   总被引:9,自引:0,他引:9  
The binding to the egg's zona pellucida stimulates the spermatozoon to undergo acrosome reaction, a process which enables the sperm to penetrate the egg. Prior to this binding, the spermatozoa underago in the female reproductive tract a series of biochemical transformations, collectively called capacitation. The first event in capacitation is cholesterol efflux leading to the elevation of intracellular calcium and bicarbonate to activate adenylyl cyclase (AC) to produce cyclic-AMP, which activates protein kinase A (PKA) to indirectly phosphorylate certain proteins on tyrosine. During capacitation, there is also an increase in protein tyrosine phosphorylation dependent actin polymerization and in the membrane-bound phospholipase C (PLC). Sperm binding to zona-pellucida causes further activation of cAMP/PKA and protein kinase C (PKC), respectively. PKC opens a calcium channel in the plasma membrane. PKA together with inositol-trisphosphate activate calcium channels in the outer acrosomal membrane, which leads to an increase in cytosolic calcium. The depletion of calcium in the acrosome will activate a store-operated calcium entry mechanism in the plasma membrane, leading to a higher increase in cytosolic calcium, resulting in F-actin dispersion which enable the outer acrosomal and the plasma membrane to come into contact and fuse completing the acrosomal reaction.  相似文献   

18.
During cryopreservation, the cell plasma membrane faces severe perils, including lipid phase separation, solute effects, and osmotic stresses associated with ice crystallization. How the initial biophysical properties of the plasma membrane can be modulated before cryopreservation in order to influence cellular resistance to the freeze-thaw stress is addressed in this study. Rainbow trout (Oncorhynchus mykiss) spermatozoa were chosen because the lack of an acrosome in this species suppresses potential interactions of cryopreservation with capacitation. Methyl-beta cyclodextrin-induced modulation of membrane cholesterol revealed the presence of a significant cholesterol exchangeable pool in the trout sperm plasma membrane, as membrane cholesterol content could be halved or doubled with respect to the basic composition of the cell without impairing fresh sperm motility and fertilizing ability. Biophysical properties of the sperm plasma membrane were affected by cholesterol changes: membrane resistance to a hypo-osmotic stress increased linearly with membrane cholesterol whereas membrane fluidity, assessed with DPH (1,6-diphenyl-1,3,5-hexatriene) and with several spin-labeled analogues of membrane lipids, decreased. Phosphatidyl serine translocation between the bilayers was slowed at high cholesterol content. The increased cohesion of fresh trout sperm plasma membrane as cholesterol increased did not improve the fertilizing ability of frozen-thawed sperm whereas the lowest cholesterol contents impaired this parameter of sperm quality. Our study demonstrated that cholesterol induced a stabilization of the plasma membrane in rainbow trout spermatozoa, but this stabilization before cryopreservation brought no improvement to the poor freezability of this cell.  相似文献   

19.
The interactions of ram spermatozoa with exogenous liposomes of varying composition were studied, with the aim of examining the mechanisms by which some lipids protect against cold-induced damage during cryostorage. Liposomes containing various preparations of phosphatidylcholine and cholesterol enhanced sperm survival during storage at 5°C, both in terms of motility and acrosomal integrity. A membrane-fluidizing agent, A2C, was slightly deleterious in this respect. Cholesterol-containing liposomes were not superior in their effects to those prepared without cholesterol. Thus stabilization of the plasma membrane by cholesterol loading may be unimportant. When sodium vanadate was used as a functional probe of membrane integrity, the cryoprotective effects of lipids were apparent despite increased plasma membrane permeability. Incubation of spermatozoa with positively charged liposomes, containing stearyl-amine, caused considerable loss of motility and acrosomal damage, coupled with cellular aggregation. There was also some evidence that the presence of calcium lessened the effectiveness of liposomes in protecting spermatozoa against damage during cooling.  相似文献   

20.
Guinea pig spermatozoa are able to undergo capacitation and the acrosome reaction in a K+-free (-deficient) medium. However, they are unable to fuse with eggs unless they are exposed to a millimolar concentration of extracellular K+ during or after the acrosome reaction. Apparently, the plasma membrane over the equatorial segment gains the ability to fuse with eggs in the presence of K+ during and/or after the acrosome reaction. Once it becomes fusible, the membrane retains its fusibility even in a K+-deficient medium. Rb+ is almost as effective as K+ in rendering the sperm membrane fusible. Li+ and Cs+ are less effective. The molecular mechanism by which K+ renders acrosome-reacted spermatozoa fusion competent is unknown, but it may involve K+-mediated efflux of H+ from the spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号