首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and tooth attachment of the comblike teeth and denticles of the ayu sweetfish, Plecoglossus altivelis, were examined by light and scanning electron microscopy. The denticle is composed of a spoonlike crown with a spine pointed anteriorly, a triangular plate in the cervical region, and a root that curves laterally and tapers off to a point. The root apex is fused with a long thin pedicle that turns abruptly anteriad toward the jaw bone. Planes of the spine, the spoonlike crown, the triangle plate and the root of the denticle are varied, and the denticle is twisted in the region of the triangle plane. The superficial layer of the dentine is homogeneously calcified and is considered to be enameloid, because some of the inner dentinal epithelial cells in the tooth germ are columnar and possess cellular processes at their apical ends. The dentine is fibrous and fine dentinal tubules are visible in dentine treated with sodium hydroxide and observed by scanning electron microscopy. The upper half of the root is surrounded by a dense layer of collagen fibers running parallel to the tooth axis, and the lower half is encompassed by interlaced collagen fibers. The lower part of the root is open on its lingual side. The pedicle is a long rod which is homogeneously calcified and enmeshed by interlaced collagen fibers, and it curves mediad as it nears the jaw bone. The pedicles are interposed between a layer of gelatinous connective tissue and the jaw bone and terminate on the periosteum. Comparative aspects of ayu tooth morphology are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The structure of ankylotic teeth in Xenopus laevis was studied by light, transmission, and scanning electron microscopy as well as by microradiography in decalcified and undecalcified specimens. The mature teeth of Xenopus laevis are calcified from the crown to the base, fused to the jaw bone, and have no uncalcified area, such as a fibrous ring separating the tooth into the crown and pedicle. Microradiography shows that the mature tooth and jaw bone appear as an X-ray opaque area, except for the basal region of the dentine. This region is composed of an X-ray translucent area and an X-ray opaque thin layer on the lingual side of the translucent area. The mature tooth is composed of two differently calcified areas: (1) a highly calcified area, which makes up almost all of the tooth and contains a thin layer of the basal dentine on the lingual side, and (2) a lowly calcified basal dentine, which is fused to the jaw bone. Therefore, the lowly calcified area does not completely separate the dentine and jaw bone. Repeating banding patterns among the collagen fibrils differ among the dentine-forming area and the matrices of dentine and jaw bone. During the formation of ankylosis of the tooth germ, collagen bundles in the dentine-forming area accumulate directly on the surface of the jaw bone. Consequently, the mature teeth of Xenopus laevis fuse to the jaw bone directly without the mediation of the other structures.  相似文献   

3.
Robert I.  Howes 《Journal of Zoology》1987,212(1):177-189
An SEM study of the surface morphology of the major stages of mature and developing teeth of the leopard frog was made using anorganic preparations of the teeth and jaws. After initial development, the crown area changed little during subsequent tooth eruption, ankylosis and maturation. The thin enamel covering extended further down the shaft than expected. After ankylosis, the surfaces of the tooth continued to mature. The unmineralized gap between the crown and the pedestal, which is prominent in most amphibians, gradually filled in as the ankylosed tooth aged. The upper portion of the pedestal initially formed a dentine surface which was globular in appearance due to partial calcification of the surface collagen fibres but became smooth with uniformly calcified fibres as the ankylosed tooth matured. The lower portion of the pedestal was more variable and there was a gradual transition of dentine into a more cellular, bone-like tissue which contained lacunae and larger fibre bundles. This bone-like tissue was very distinct in surface morphology from the bone of the adjacent jaw, and as the tooth matured it changed from a coarse, woven appearance to one more like lamellar bone. Resorption bays were present in both the dentine and bony areas of teeth which were being shed. During development, the pedestal, which attaches the tooth to the jaw, formed as a separate calcification site and did not form a complete ring until fusion of its buccal surface with that of the overlying crown. A bony buccal lip formed early as part of the pedestal.  相似文献   

4.
The radular teeth are secreted at the posterior end of the radular gland and move slowly towards the buccal cavity where they start to function. Helix pomatia and Limax flavus were examined to determine whether the newly formed teeth already show their definite species specific shape, or whether they are gradually finished and moulded in the radular gland. Scanning electron micrographs of Helix pomatia show that teeth are secreted in the odontoblast region in their final form. Their surface is still uneven at the outset; the same is true for the newest teeth of Limax flavus. Older teeth ready for use have a smooth surface. This change seems to be brought about by secretory activity of the superior epithelium of the radular sac. Air-dried radulae, previously isolated by KOH maceration, show considerable artefacts at their posterior end. Maceration leads to shrinking of the newest teeth, but does not change their contours. The newly secreted but as yet unhardened teeth become greatly deformed during the drying process.  相似文献   

5.
The structure and organization of the organic matrix of the cusps of the major lateral teeth of the chiton Acanthopleura hirtosahave been examined using conventional light and transmission electron microscopy techniques and by using the protein ferritin as an ultrastructural probe. The results show major structural differences in the organic matrix between the surface layers of the anterior (calcified) region and the posterior (magnetite-mineralized) region and their respective underlying regions. In addition, the central (lepidocrocite-mineralized) region of the tooth has been examined and shown to consist of bundles of fibres arranged such that they display a tightly interwoven pattern. It is suggested that while the structural organization of surface fibres readily permits the passage of ions required for mineralization, the architecturally discrete distribution of biominerals found in mature chiton teeth is due mostly to spatial delineation of the tooth by matrix macromolecules in the central region of the tooth.  相似文献   

6.
Study of the evolutionary enameloid/enamel transition suffers from discontinuous data in the fossil record, although a developmental enameloid/enamel transition exists in living caudates, salamanders and newts. The timing and manner in which the enameloid/enamel transition is achieved during caudate ontogeny is of great interest, because the caudate situation could reflect events that have occurred during evolution. Using light and transmission electron microscopy, we have monitored the formation of the upper tooth region in six successive teeth of a tooth family (position I) in Pleurodeles waltl from late embryos to young adult. Enameloid has only been identified in embryonic tooth I1 and in larval teeth I2 and I3. A thin layer of enamel is deposited later by ameloblasts on the enameloid surface of these teeth. From post-metamorphic juvenile onwards, teeth are covered with enamel only. The collagen-rich enameloid matrix is deposited by odontoblasts, which subsequently form dentin. Enameloid, like enamel, mineralizes and then matures but ameloblast participation in enameloid matrix deposition has not been established. From tooth I1 to tooth I3, the enameloid matrix becomes ever more dense and increasingly comes to resemble the dentin matrix, although it is still subjected to maturation. Our data suggest the absence of an enameloid/enamel transition and, instead, the occurrence of an enameloid/dentin transition, which seems to result from a progressive slowing down of odontoblast activity. As a consequence, the ameloblasts in post-metamorphic teeth appear to synthesize the enamel matrix earlier than in larval teeth.  相似文献   

7.
The purpose of this study was to compare the fatigue and tensile strengths of radicular dentin. Forty bovine lower central incisors were used, twenty teeth for the fatigue test and twenty teeth for the tensile test. Bovine teeth were each sectioned into coronal and radicular portions. Dentin slabs of 1mm thickness were prepared along the radicular tooth using a low-speed cutting machine and trimmed into dumbbell-shaped specimens. A dentin slab was harvested from each tooth. Subsequently, fatigue and tensile tests were performed in Hank's balanced saline solution at 37 °C. The staircase method was employed to determine fatigue strength and its standard deviation. Fracture surfaces were observed by scanning electron microscopy. Mean fatigue strength and tensile strength were 44.3±5.0 and 84.4±8.3 MPa, respectively. The fatigue strength of radicular dentin was significantly lower than the tensile strength. The fatigue strength of radicular dentin was only approximately one half of the tensile strength.  相似文献   

8.
Abstract Teeth are generally used for actions in which they experience mainly compressive forces acting toward the base. The ordered tooth enamel(oid) and dentin structures contribute to the high compressive strength but also to the minor shear and tensile strengths. Some vertebrates, however, use their teeth for scraping, with teeth experiencing forces directed mostly normal to their long axis. Some scraping suckermouth catfishes (Loricariidae) even appear to have flexible teeth, which have not been found in any other vertebrate taxon. Considering the mineralized nature of tooth tissues, the notion of flexible teeth seems paradoxical. We studied teeth of five species, testing and measuring tooth flexibility, and investigating tooth (micro)structure using transmission electron microscopy, staining, computed tomography scanning, and scanning electron microscopy-energy-dispersive spectrometry. We quantified the extreme bending capacity of single teeth (up to 180°) and show that reorganizations of the tooth (micro)structure and extreme hypomineralization of the dentin are adaptations preventing breaking by allowing flexibility. Tooth shape and internal structure appear to be optimized for bending in one direction, which is expected to occur frequently when feeding (scraping) under natural conditions. Not all loricariid catfishes possess flexible teeth, with the trait potentially having evolved more than once. Flexible teeth surely rank among the most extreme evolutionary novelties in known mineralized biological materials and might yield a better understanding of the processes of dentin formation and (hypo)mineralization in vertebrates, including humans.  相似文献   

9.
The 200-300 microm soft zone of dentin, found beneath enamel in crowns of human teeth, is thought to fulfill important roles in tooth function, but little is known about its structure-mechanical relations. Scanning electron microscopy images of fracture surfaces showed that near the dentino-enamel junction (DEJ), a porous reticulate matrix of intertubular-dentin contains tubules with no peritubular lining. Peritubular-dentin however is found at some distance from the DEJ, and it gradually thickens with increasing depth into the bulk dentin. Concurrently, tighter packing of the collagen fibers is observed with a gradual increase in mineral deposits on and between the fibers. This structurally graded zone is known to be softer when tested for micro-hardness. It undergoes greater strain compared to bulk dentin, when measured using Moiré interferometry. We investigated the deformation and stiffness of this zone by means of non-contact laser-speckle interferometry (ESPI), and nanometer-scale deformations were tracked during compression-testing performed in water. We report a significantly reduced stiffness of this zone compared to bulk dentin, with mid-buccal regions of teeth averaging 3.5 GPa compared with 9.7 GPa in mid-lingual regions. Our results support and expand upon the hypothesis that the durability of the whole tooth relies upon a bucco-lingual asymmetric matching of stiffness by means of an interphase: a cushioning soft layer between enamel and bulk dentin.  相似文献   

10.
Ultrastructural and histochemical features of marginal (monostichous) teeth associated with the jawbones are compared with those of palatal (polystichous) teeth that compose two patches in the roof of the mouth. The apices and uncalcified regions are similar in both kinds of teeth, but the basal regions display distinctive differences. While bases (pedestals) of marginal teeth are essentially hollow cylinders that attach to the jawbones by their labial faces, bases of teeth in palatal patches are fused to form two horizontal plates which lack direct attachment to underlying bone. The plates are separated from each other by a pulp-filled space containing fibroblasts, blood vessels, and vertically oriented elements resembling bony spicules. Cylindrical pedestals like those of marginal teeth project from the ventral plate. While the identity of the material composing the basal regions remains controversial, the following evidence suggests that it is similar to “bone of attachment” (Tomes, '23): most of it, unlike dentin, does not develop in direct association with an enamel organ; alcian blue stains the bases of developing teeth but stains dentin, developing dentin, enamel, or mature bone very weakly (if at all); bases of teeth in palatal patches develop in isolation from the parasphenoid bone and thus cannot be considered extensions of it; and marginal teeth attach directly to the jawbones, but the material composing their bases does not blend with the bone. Structural heterogeneity of the basal regions appears to be linked to functional differences exhibited by these two types of teeth.  相似文献   

11.
The assembly of the collagenous organic matrix prior to mineralization is a key step in the formation of bones and teeth. This process was studied in the predentin of continuously forming rat incisors, using unstained vitrified ice sections examined in the transmission electron microscope. Progressing from the odontoblast surface to the mineralization front, the collagen fibrils thicken to ultimately form a dense network, and their repeat D-spacings and banding patterns vary. Using immunolocalization, the most abundant noncollagenous protein in dentin, phosphophoryn, was mapped to the boundaries between the gap and overlap zones along the fibrils nearest the mineralization front. It thus appears that the premineralized collagen matrix undergoes dynamic changes in its structure. These may be mediated by the addition and interaction with the highly anionic noncollagenous proteins associated with collagen. These changes presumably create a collagenous framework that is able to mineralize.  相似文献   

12.
Maxillary right first molar teeth of rats were tipped mesially with an orthodontic appliance for 2 weeks (experimental group), 3H-proline was injected, and orthodontic forces were removed 6 hr later (time 0). The contralateral molar teeth of treated (internal control group) and age- and weight-matched untreated animals (external control group) were also studied. Diastemata were created between the molar teeth by the orthodontic appliance, and transseptal fibers between first and second (P less than 0.001) and second and third molars (P less than 0.005) were significantly lengthened as compared to external and internal controls at time 0. Diastemata between molar teeth were closed 5 days after removal of orthodontic force. Transseptal fibers adjacent to the source of the orthodontic force (mesial region) had the highest mean number of 3H-proline-labeled proteins at time 0 and at all times following removal of the force (P less than 0.001), and had the highest rate of labeled protein removal (P less than 0.001). Half-lives for removal of 3H-proline-labeled transseptal fiber proteins were significantly greater in mesial and distal regions and significantly less in middle regions of experimentals than in corresponding regions of external controls (P less than 0.001). These data suggest the following: 1) transseptal fibers adjust their length by rapid remodeling in regions experiencing a tensile force; 2) collagenous protein turnover within the middle third of the transseptal fibers is more rapid subsequent to release of orthodontic force than during normal physiologic drift, suggesting that this region adapts rapidly to changes in adjacent tooth position and that these fibers do not play a significant role in relapse of orthodontically relocated teeth; and 3) significant differences in turnover rates of 3H-proline-labeled transseptal ligament proteins of external and internal control quadrants suggest that tooth movement produces both local and systemic effects on collagenous protein metabolism.  相似文献   

13.
The distribution of certain basement membrane (BM) components including type IV collagen, laminin, BM proteoglycan, and fibronectin was studied in developing mouse molar teeth, using antibodies or antisera specific for these substances in indirect immunofluorescence. At the onset of cuspal morphogenesis, type IV collagen, laminin, and BM proteoglycan were found to be present throughout the basement membranes of the tooth. Fibronectin was abundant under the inner enamel epithelium at the region of differentiating odontoblasts and also in the mesenchymal tissues. After the first layer of predentin had been secreted by the odontoblasts at the epithelial-mesenchymal interface, laminin remained in close association with the epithelial cells whereas type IV collagen, BM proteoglycan, and fibronectin were distributed uniformly throughout this area. Later when dentin had been produced and the epithelial cells had differentiated into ameloblasts, basement membrane components disappeared from the cuspal area. These matrix components were not detected in dentin while BM proteoglycan and fibronectin were present in predentin. The observed changes in the collagenous and noncollagenous glycoproteins and the proteoglycan appear to be closely associated with cell differentiation and matrix secretion in the developing tooth.  相似文献   

14.
Comparative analysis of tooth development in the main vertebrate lineages is needed to determine the various evolutionary routes leading to current dentition in living vertebrates. We have used light, scanning and transmission electron microscopy to study tooth morphology and the main stages of tooth development in the scincid lizard, Chalcides viridanus, viz., from late embryos to 6-year-old specimens of a laboratory-bred colony, and from early initiation stages to complete differentiation and attachment, including resorption and enamel formation. In C. viridanus, all teeth of a jaw have a similar morphology but tooth shape, size and orientation change during ontogeny, with a constant number of tooth positions. Tooth morphology changes from a simple smooth cone in the late embryo to the typical adult aspect of two cusps and several ridges via successive tooth replacement at every position. First-generation teeth are initiated by interaction between the oral epithelium and subjacent mesenchyme. The dental lamina of these teeth directly branches from the basal layer of the oral epithelium. On replacement-tooth initiation, the dental lamina spreads from the enamel organ of the previous tooth. The epithelial cell population, at the dental lamina extremity and near the bone support surface, proliferates and differentiates into the enamel organ, the inner (IDE) and outer dental epithelium being separated by stellate reticulum. IDE differentiates into ameloblasts, which produce enamel matrix components. In the region facing differentiating IDE, mesenchymal cells differentiate into dental papilla and give rise to odontoblasts, which first deposit a layer of predentin matrix. The first elements of the enamel matrix are then synthesised by ameloblasts. Matrix mineralisation starts in the upper region of the tooth (dentin then enamel). Enamel maturation begins once the enamel matrix layer is complete. Concomitantly, dental matrices are deposited towards the base of the dentin cone. Maturation of the enamel matrix progresses from top to base; dentin mineralisation proceeds centripetally from the dentin–enamel junction towards the pulp cavity. Tooth attachment is pleurodont and tooth replacement occurs from the lingual side from which the dentin cone of the functional teeth is resorbed. Resorption starts from a deeper region in adults than in juveniles. Our results lead us to conclude that tooth morphogenesis and differentiation in this lizard are similar to those described for mammalian teeth. However, Tomes processes and enamel prisms are absent.  相似文献   

15.
Most nonmammalian species replace their teeth continuously (so-called polyphyodonty), which allows morphological and structural modifications to occur during ontogeny. We have chosen Pleurodeles waltl, a salamander easy to rear in the laboratory, as a model species to establish the morphological foundations necessary for future molecular approaches aiming to understand not only molecular processes involved in tooth development and replacement, but also their changes, notably during metamorphosis, that might usefully inform studies of modifications of tooth morphology during evolution. In order to determine when (in which developmental stage) and how (progressively or suddenly) tooth modifications take place during ontogeny, we concentrated our observations on a single tooth family, located at position I, closest to the symphysis on the left lower jaw. We monitored the development and replacement of the six first teeth in a large growth series ranging from 10-day-old embryos (tooth I1) to adult specimens (tooth I6), using light (LM), scanning (SEM), and transmission electron (TEM) microscopy. A timetable of the developmental and functional period is provided for the six teeth, and tooth development is compared in larvae and young adults. In P. waltl the first functional tooth is not replaced when the second generation tooth forms, in contrast to what occurs for the later generation teeth, leading to the presence of two functional teeth in a single position during the first 2 months of life. Larval tooth I1 shows dramatically different features when compared to adult tooth I6: a dividing zone has appeared between the dentin cone and the pedicel; the pulp cavity has enlarged, allowing accommodation of large blood vessels; the odontoblasts are well organized along the dentin surface; tubules have appeared in the dentin; and teeth have become bicuspidate. Most of these modifications take place progressively from one tooth generation to the next, but the change from monocuspid to bicuspid tooth occurs during the tooth I3 to tooth I4 transition at metamorphosis.  相似文献   

16.
Experimental periodontal regeneration studies have revealed the weak binding of repair cementum to the root surface, whereas attachment of cementum to dentin preconditioned by odontoclasts appears to be superior. The aim of this study has been, therefore, to analyze the structural and partial biochemical nature of the interface that develops between resorbed dentin and repair cementum by using human deciduous teeth as a model. Aldehyde-fixed and decalcified tooth samples were embedded in acrylic or epoxy resins and sectioned for light and transmission electron microscopy. Antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two noncollagenous proteins accumulating at hard tissue interfaces in bone and teeth, were used for protein A-gold immunocytochemistry. Light microscopy revealed a gradually increasing staining intensity of the external dentin matrix starting after the withdrawal of the odontoclast. Labeling for both BSP and OPN was first detected among the exposed collagen fibrils and in the intratubular dentin matrix when odontoclasts had withdrawn but mesenchymal cells were present. Subsequently, collagen fibrils of the repair cementum were deposited concomitantly with the appearance of labeling for BSP and OPN over the intratubular, intertubular, and peritubular dentin matrix. Labeled mineralization foci indicated the advancing mineralization front, and the collagenous repair matrix became integrated in an electron-dense organic material that showed labeling for BSP and OPN. Thus, no distinct planar interfacial matrix layer lies between the resorbed dentin and the repair cementum. The results suggest that odontoclasts precondition the dentin matrix such that the repair cementum becomes firmly attached.This study was supported by the Clinical Research Foundation (CRF) for the Promotion of Oral Health, University of Berne, Berne, Switzerland.  相似文献   

17.
Tooth wear scores (ratios of exposed dentin to total crown area) were calculated from dental casts of Australian Aboriginal subjects of known age from three populations. Linear regression equations relating attrition scores to age were derived. The slope of the regression line reflects the rate of tooth wear, and the intercept is related to the timing of first exposure of dentin. Differences in morphology between anterior and posterior teeth are reflected in a linear relationship between attrition scores and age for anterior teeth but a logarithmic relationship for posterior teeth. Correlations between age and attrition range from less than 0.40 for third molars (where differences in the eruption and occlusion of the teeth resulted in different patterns of wear) to greater than 0.80 for the premolars and first molars. Because of the generally high correlations between age and attrition, it is possible to estimate age from the extent of tooth wear with confidence limits of the order of +/- 10 years.  相似文献   

18.
The major lateral teeth of the chiton Acanthopleura echinata are composite structures composed of three distinct mineral zones: a posterior layer of magnetite; a thin band of lepidocrocite just anterior to this; and apatite throughout the core and anterior regions of the cusp. Biomineralization in these teeth is a matrix-mediated process, in which the minerals are deposited around fibers, with the different biominerals described as occupying architecturally discrete compartments. In this study, a range of scanning electron microscopes was utilized to undertake a detailed in situ investigation of the fine structure of the major lateral teeth. The arrangement of the organic and biomineral components of the tooth is similar throughout the three zones, having no discrete borders between them, and with crystallites of each mineral phase extending into the adjacent mineral zone. Along the posterior surface of the tooth, the organic fibers are arranged in a series of fine parallel lines, but just within the periphery their appearance takes on a "fish scale"-like pattern, reflective of the cross section of a series of units that are overlaid, and offset from each other, in adjacent rows. The units are approximately 2 microm wide and 0.6 microm thick and comprise biomineral plates separated by organic fibers. Two types of subunits make up each "fish scale": one is elongate and curved and forms a trough, in which the other, rod-like unit, is nestled. Adjacent rod and trough units are aligned into large sheets that define the fracture plane of the tooth. The alignment of the plates of rod-trough units is complex and exhibits extreme spatial variation within the tooth cusp. Close to the posterior surface the plates are essentially horizontal and lie in a lateromedial plane, while anteriorly they are almost vertical and lie in the posteroanterior plane. An understanding of the fine structure of the mineralized teeth of chitons, and of the relationship between the organic and mineral components, provides a new insight into biomineralization mechanisms and controls.  相似文献   

19.
Structure, composition, and mechanical properties of shark teeth   总被引:2,自引:0,他引:2  
The teeth of two different shark species (Isurus oxyrinchus and Galeocerdo cuvier) and a geological fluoroapatite single crystal were structurally and chemically characterized. In contrast to dentin, enameloid showed sharp diffraction peaks which indicated a high crystallinity of the enameloid. The lattice parameters of enameloid were close to those of the geological fluoroapatite single crystal. The inorganic part of shark teeth consisted of fluoroapatite with a fluoride content in the enameloid of 3.1 wt.%, i.e., close to the fluoride content of the geological fluoroapatite single crystal (3.64 wt.%). Scanning electron micrographs showed that the crystals in enameloid were highly ordered with a special topological orientation (perpendicular towards the outside surface and parallel towards the center). By thermogravimetry, water, organic matrix, and biomineral in dentin and enameloid of both shark species were determined. Dentin had a higher content of water, organic matrix, and carbonate than enameloid but contained less fluoride. Nanoindentation and Vicker's microhardness tests showed that the enameloid of the shark teeth was approximately six times harder than the dentin. The hardness of shark teeth and human teeth was comparable, both for dentin and enamel/enameloid. In contrast, the geological fluoroapatite single crystal was much harder than both kinds of teeth due to the absence of an organic matrix. In summary, the different biological functions of the shark teeth ("tearing" for Isurus and "cutting" for Galeocerdo) are controlled by the different geometry and not by the chemical or crystallographic composition.  相似文献   

20.
There are four major tooth attachment modes in actinopterygians. Type 1 mode is characterized by complete ankylosis of the tooth to the attachment bone; it is the primitive attachment mode for actinopterygians. In Type 2 mode there is a ring of collagen between the tooth base and the bone. In Type 3 mode mineralization extends near or to the bone at the anterior tooth border, and there is a relatively large collagen area on the posterior surface of the tooth; Type 3 teeth are hinged with an anterior axis of rotation. Type 4 teeth also have a relatively large posterior collagen area, but there is no collagenous connection between the anterior basal tooth border and the attachment bone; Type 4 teeth are hinged, with a posterior axis of rotation. Types 2, 3, and 4 attachment modes appear to result from retardation of mineralization and resemble, with some modifications, ontogenetic stages in the development of Type 1 mode; they are considered to be paedomorphic features. Attachment modes 2, 3, and 4 are each associated with a major evolutionary lineage within the Teleostei. The degree to which paedomorphosis has been a factor in teleostean evolution is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号