首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Madin-Darby canine kidney (MDCK) cell line was investigated with respect to the cellular polarity of amino acid transport in early confluent versus late confluent cultures. Early confluent cultures could take up amino acids from the apical and the basolateral sides of the cell layer via amino acid transport Systems A, ASC, and L. However, in late confluent cultures the activities of Systems A and L were clearly localized to the basolateral surface of the cell monolayer. In addition to the presence of systems A, ASC, and L, a novel activity, measurable under conditions used for quantitating System ASC, was found to be active in the apical membrane of these cells. This transporter, termed System G (for general), recognized basic and neutral amino acids with high affinity and acidic amino acids with lower affinity. System G exhibited broad substrate specificity, strict cation specificity, and a broad pH optimum with maximal activity at acidic pH. The activity of System G was relatively low after growth in serum-containing medium but was induced in a defined medium. Induction of System G activity was dependent upon the presence of prostaglandin E1. The broad substrate specificity, low pH optimum, and Na+ dependence suggest that System G may function in apical membranes as an energy-dependent transport route during reabsorption of amino acids from the kidney tubule lumen.  相似文献   

2.
Na+-stimulated amino acid transport was investigated in MDCK kidney epithelial cell monolayers and in isolated membrane vesicles. When transport polarity was assessed in confluent polarized epithelial cell monolayers cultured on Nucleopore filters and mounted between two lucite chambers, Na+-stimulated transport of 2-(methylamino)isobutyric acid (MeAIB), a substrate specific for the A system, was predominantly localized on the basolateral membrane. Na+-stimulated amino acid transport activity was maximal in subconfluent cultures, and was substantially reduced after confluence. A membrane vesicle preparation was isolated from confluent MDCK cell cultures which was enriched in Na+-stimulated MeAIB transport activity and Na+,K+,ATPase activity, a basolateral marker, but was not enriched in apical marker enzyme activities or significantly contaminated by mitochondria. Na+-coupled amino acid transport activity assayed in vesicles exhibited a marked dependence on external pH, with an optimum at pH 7.4. The pattern of competitive interactions among neutral amino acids was characteristic of A system transport. Na+-coupled MeAIB and AIB transport in vesicles was electrogenic, stimulated by creation of an interior-negative membrane potential. The Na+ dependence of amino acid transport in vesicles suggested a Na+ symport mechanism with a 1:1 stoichiometry between Na+ and amino acid.  相似文献   

3.
4.
Neutral amino acid transport by system A was investigated in the epithelial cell lines MDCK and MDCK-T1. The latter line is a chemically induced, oncogenically transformed line derived from MDCK. Inducers of differentiation, sodium butyrate and 5-azacytidine, and a tumor promoter, TPA, were used as probes to delineate pathways of regulation involved in system A response to a variety of physiological conditions and agents. Azacytidine, an inhibitor of DNA methylation, and butyrate, an enhancer of histone acetylation, inhibited expression of system A, had little effect on system ASC, and slightly stimulated system L. Inhibition of system A expression by butyrate and azacytidine occurred under different conditions. Increases in system A activity due to amino acid starvation or transformation were inhibited by butyrate but not by azacytidine. Repressed system A activity, normally observed in the presence of high levels of amino acids, was more sensitive to azacytidine than to butyrate. The tumor promoter, TPA, stimulated system A activity in MDCK cells under normal growth conditions but did not stimulate activity in amino acid-starved MDCK cells or in MDCK-T1 cells. Stimulation of system A activity by TPA was prevented by prior exposure to butyrate but not to azacytidine. These results suggest 1) that system A expression observed in growing amino-acid-repressed MDCK cells is modulated by an azacytidine-sensitive mechanism and 2) that the elevated expression of system A activity induced by amino acid starvation, by chemical transformation to MDCK-T1, and by TPA is modulated by a butyrate-sensitive mechanism.  相似文献   

5.
The transport of 2-aminoisobutyric acid (AIB) into liver tissue was increased by both insulin and glucagon. We have now shown that these hormones do not stimulate the same transport system. Glucagon, possibly via cAMP, increased the hepatic uptake of AIB by a mechanism which resembled system A. This glucagon-sensitive system could be monitored by the use of the model amino acid MeAIB. In contrast, the insulin-stimulated system exhibited little or no affinity for MeAIB and will be referred to as system B. On the basis of other reports that the hepatic transport of AIB is almost entirely Na+ dependent and the present finding that the uptake of 2-aminobicyclo [2,2,1] heptane-2-carboxylic acid (BCH) was not stimulated by either hormone, we conclude that system B is Na+ dependent. Furthermore, insulin added to the perfusate of livers from glucagon-pretreated donors suppressed the increase in AIB or MeAIB uptake. Depending upon the specificities of systems A and B, both of which are unknown for liver tissue, the insulin/glucagon ratio may alter the composition of the intracellular pool of amino acids.  相似文献   

6.
The development of surface polarity has been studied in the epithelial Madin-Darby canine kidney (MDCK) cell line by examining two basolateral markers: a monoclonal antibody against a 58-kd protein and [35S]methionine uptake. The surface distribution of these markers was followed after plating the cells on coverslips or nitrocellulose filters. In subconfluent monolayers the apical surface of many cells was stained with the anti-58-kd antibody. Clearing of the apical surface occurred first after confluency had been reached in cells grown on coverslips. Similarly, in cells grown on filters the basolateral 58-kd protein disappeared from the apical surface concomitantly with the development of a measurable electrical resistance over the cell monolayer. The uptake of [35S]methionine was measured from both sides of filter-grown cells and began to polarize early after seeding, reaching a value of greater than 98% basolateral in the fully polarized monolayer. These results emphasize that the development of surface polarity in MDCK cells is a gradual process, and that extensive cell-cell contacts seem to be required for complete surface polarization.  相似文献   

7.
N Rodrig  T Osanai  M Iwamori  Y Nagai 《FEBS letters》1987,221(2):315-319
The effect of exogenous gangliosides on the occurrence of domes in MDCK cell cultures was investigated in view of the involvement of both dome formation and gangliosides in cell growth, differentiation and transepithelial transport. Dome formation was increased by gangliosides in medium free of fetal calf serum. Among the gangliosides tested, GM3 and GD3 isolated from porcine kidney were most active, increasing the dome number 12-17-fold. Since gangliosides from kidney were more active than those from brain and erythrocytes, the hydrophobic moiety as well as sialic acid might be involved in this activity. These results indicate that tissue-specific molecules of gangliosides function as inducers or mediators of dome formation. The mechanism probably involves adenylate-cyclase or another transmembrane biosignal-transducing system.  相似文献   

8.
Madin-Darby canine kidney (MDCK) cells grown in tissue culture have the morphological properties of distal tubular epithelial cells, form tight junctions, and lack several proximal tubular enzyme markers. Adenylate cyclase in these cells was stimulated by vasopressin, oxytocin, prostaglandins E1 and E2, glucagon, and cholera toxin. Hormone-stimulated adenylate cyclase activity in isolated membrane preparations was dependent on low concentrations of GTP and had the MgCl2 and pH optima expected for the kidney enzyme. The results, as well as the demonstration of enhanced hemicyst formation induced by cyclic AMP, suggest that the MDCK cell line has retained the differentiated properties of the kidney epithelial cell of origin. When MDCK cells were injected into baby nude mice, continuous nodule growth was observed until adulthood was attained. Histological studies revealed the presence of two cell types: normal mouse fibroblasts which comprise 80--90% of the solid nodule mass, and MDCK cells, which formed epithelial sheets lining internal fluid-filled glands. Electron microscope analysis showed that the mucosal surfaces of the cells were characterized by microvilli which faced the lumen of the glands, that adjacent MDCK cells were joined by tight junctions, and that the serosal surfaces of the epithelial sheets were characterized by smooth plasma membranes which were lined by a continuous basement membrane. These observations lead to the conclusion that the MDCK cells retain regional differentiation of their plasma membranes and the ability to regenerate kidney tubule-like structures in vivo.  相似文献   

9.
Adaptive regulatory control of System A activity was investigated using MDCK cells and a chemically induced, oncogenic transformant of MDCK cells, MDCK-T1. Within 7 hours after transfer to an amino-acid-deficient medium, A activity of subconfluent MDCK cells had maximally derepressed, but this activity in confluent MDCK cells and in subconfluent transformed cells showed little capacity for derepression. Amino-acid-starved, subconfluent MDCK cells were used to study trans-inhibition and repression of A activity by individual amino acids. Trans-inhibition and repression were defined as the cycloheximide-insensitive and cycloheximide-sensitive components, respectively, of the total inhibition. Trans-inhibition correlated well with substrate affinity, but repression did not. Trans-inhibition and repression were further characterized using alpha-(methylamino) isobutyric acid (mAIB), a trans-inhibitor, and glutamate, an effective repressor. The apparent initial T 1/2 for inhibition by mAIB in the presence of cycloheximide was 0.5 hours, while that for repression by glutamate was 4.7 hours. Half-maximal inhibition by mAIB and repression by glutamate occurred at approximately 0.02 mM and 0.07 mM, respectively. Reversal of trans-inhibition by methionine occurred in the presence of cycloheximide within 1-4 hours after removal of methionine. The A system of the transformed MDCK-T1 cells showed elevated activity, little capacity for derepression, resistance to repression by amino acids, but retention of sensitivity to trans-inhibition. Kinetic analysis of mAIB uptake indicated that the A system of MDCK-T1 cells has become kinetically more complex in a manner which resembled amino-acid-starved rather than amino-acid-fed MDCK cells. These results suggest that the A system of MDCK-T1 cells has become resistant to adaptive regulatory control.  相似文献   

10.
Summary The activities of the transport systems A, B° and XAG- are induced by various forms of stress in renal epithelial cells. Amino acid deprivation induces System A and XAG- in a protein-synthesis dependent process. In the case of System XAG- evidence is presented that induction of transport does not involve an increase in the amount of mRNA for the transporter or of the amount of transport protein. Preliminary evidence for the existence of a novel glycoprotein which is induced in parallel to the induction of these transport systems is presented. It is suggested that the induction of amino acid transport proteins and of some of the so-called stress proteins may be triggered by a common molecular mechanism.  相似文献   

11.
Monoclonal antibodies were prepared against the Madin-Darby canine kidney (MDCK) cell line to identify epithelial cell surface macromolecules involved in renal function. Lymphocyte hybrids were generated by fusing P3U-1 myeloma cells with spleen cells from a C3H mouse immunized with MDCK cells. Hybridomas secreting anti-MDCK antibodies were obtained and clonal lines isolated in soft agarose. We are reporting on one hybridoma line that secretes a monoclonal antibody that binds to MDCK cells at levels 20-fold greater than background binding. Indirect immunofluorescence microscopy was utilized to study the distribution of antibody binding on MDCK cells and on frozen sections of dog kidney and several nonrenal tissues. In the kidney the fluorescence staining pattern demonstrates that the antibody recognizes an antigenic determinant that is expressed only on the epithelial cells of the thick ascending limb of Henle's loops and the distal convoluted tubule and appears to be localized on the basolateral plasma membrane. This antigen also has a unique distribution in non-renal tissues and can only be detected on cells known to be active in transepithelial ion movements. These results indicate the probable distal tubule origin of MDCK and suggest that the monoclonal antibody recognizes a cell surface antigen involved in physiological functions unique to the kidney distal tubule and transporting epithelia of nonrenal tissues.  相似文献   

12.
The transport of histidine and glutamine via system N in cultured hepatocytes was found to be subject to hormonal control. This long-term regulation showed the following characteristics. The transport capacity for histidine and glutamine (system N) increased slowly in response to the combination of dexamethasone and insulin to about 4-fold that of controls after 18-30 h. A similar time course was found for the stimulation of system N (2.5-fold) by dexamethasone and glucagon. In contrast the uptake of alpha-aminoisobutyric acid (system A) was rapidly stimulated 3-fold by dexamethasone and insulin and 5-fold by dexamethasone and glucagon within 3-6 h but decreased towards control rates after 24 h of cultivation in minimal essential medium. Dexamethasone, insulin and glucagon each stimulated glutamine uptake about 2-fold in cultures maintained in W/AB 77 medium, while the combination of dexamethasone with either glucagon or insulin resulted in a 3-4-fold increase. Dexamethasone was most effective at about 0.1 microM. Higher concentrations were less efficient. Insulin reached its optimal effect at concentrations above 1 microM. Kinetic analysis revealed that the increased capacity of glutamine transport in response to hormones was due to an increase in Vmax, while Km was essentially unchanged. The hormone-induced stimulation of system N was prevented by cycloheximide. The induced uptake of glutamine was inhibited by excess amounts of asparagine and histidine but not of alpha-methylaminoisobutyric acid or cysteine. These results clearly differentiate the hormonal regulation of system N from that of system A.  相似文献   

13.
This paper reports the suitability of culturing a line of dog kidney epithelial cells, MDCK, in the presence of a serum substitute, Ultroser G. Serial subcultivation with this product was possible for at least 10 passages without any change in cell shape and size, saturation density, dome-forming ability, transepithelial resistance, and growth curve. Adhesion of newly plated cells to plastic was somewhat lower than in fetal calf serum but the trypsin-harvesting kinetics were essentially the same. However, the membrane ion transport systems was alterd: cell sodium influx was greatly diminished, suggesting a deep change in the amiloride-sensitive Na+ channels: sodium efflux was highly enhanced (both active and passive).  相似文献   

14.
The uptake of L-glutamate into BHK21-C13 cells in culture has been studied. This amino acid appears to be transported via a relatively high affinity, low capacity, Na+-dependent transport system capable of the rapid accumulation of substrate amino acids. Kinetic studies of the inhibition of L-glutamate uptake has provided information as to the substrate and the molecular configuration required for transport via the glutamate transport system. This system exhibited marked substrate specificity and was only capable of transporting L-glutamate and aspartate and certain closely related acidic amino acid analogues.  相似文献   

15.
LLC-PK1 and MDCK cells take up cationic amino acids (lysine and arginine) by a specific sodium independent transport system. Uptake is inhibited by ornithine in LLC-PK1 and MDCK cells either in the presence or absence of sodium and by glutamine or homoserine in MDCK cells in the presence of sodium. Trans-stimulation of uptake occurs in the presence of intracellular cationic amino acids. Experiments with valinomycin or with different extracellular potassium concentrations suggest that uptake is dependent on the membrane potential of these cells. These transport features are similar to those previously ascribed to a transport system denominated y+ in other cells. Further experiments suggested that this carrier system is localised to the basolateral membrane in each cell type.  相似文献   

16.
17.
Summary When MDCK cells are cultured in MEM, they maintain a high concentration of three amino acids: glutamate (25mm), taurine (19 mm) and glycine (9 mm). With incubation of the cells in hypotonic media, the contents of these amino acids measured by HPLC are reduced in different time courses: taurine decreases most rapidly, followed by glutamate and glycine. All these losses are Na+ independent. To determine the transport mechanism activated by the hypotonic media, increasing external concentrations reaching 60 mm for nine different amino acids in Na+-free media were tested separately. For the five neutral (zwitterionic) amino acids, taurine, glycine, alanine, phenylalanine and tryptophan, cell contents increased linearly with external concentrations in hypotonic media, whereas in isotonic media only a slight rise was observed. The two anionic amino acids, glutamate and aspartate, were also increased linearly with their external concentrations in hypotonic media, but the changes were lower than those found for neutral amino acids. The presence of a negative membrane potential was responsible for this behavior since, using a K+ hypotonic medium which clamps the potential to zero, the glutamate content was found to increase linearly with an amplitude similar to the one observed for neutral amino acid. When external concentrations of two cationic amino acids, arginine and lysine, were increased in hypotonic media, only a small change, similar to that in isotonic media, was observed. These results indicate that a diffusion process for neutral and anionic amino acids is activated by a volume increase and it is suggested that an anion channel is involved.  相似文献   

18.
19.
1. Two clones (osmR-A and osmR-B) resistant to hyperosmotic media of 700 and 800 mosmol/l, respectively, were selected from Madin-Darby canine kidney (MDCK) cells. 2. When cultured in isosmotic medium (300 mosmol/l), the concentration of galactosyl sulfatide and lactosyl sulfatide in these hyperosmosis-resistant clones was 3.4-5.9 times higher than in the wild-type MDCK. The rate of incorporation of [35S]sulfate into sulfolipids of osmR-A and osmR-B was 1.9-6.7 times higher than MDCK. 3. The stimulation of incorporation into sulfolipids by hyperosmotic culture was completely inhibited by cycloheximide. The pulse-chase studies indicated decreased turnover rate of sulfolipids in osmR-A.  相似文献   

20.
Both placental system A activity and fetal plasma cortisol concentrations are associated with intrauterine growth retardation, but it is not known if these factors are mechanistically related. Previous functional studies using hepatoma cells and fibroblasts produced conflicting results regarding the regulation of system A by cortisol. Using the b30 BeWo choriocarcinoma cell line, we investigated the regulation of system A by cortisol. System A function was analyzed using methyl amino isobutyric acid (MeAIB) transcellular transport studies. Transporter expression [system A transporter (SNAT)1/2] was studied at the mRNA and protein levels using Northern and Western blotting, respectively. Localization was carried out using immunocytochemistry. The [(14)C]MeAIB transfer rate across BeWo monolayers after preincubation with cortisol for 24 h was significantly increased compared with control. This was associated with a relocalization of the SNAT2 transporter at lower cortisol levels and significant upregulation of mRNA and protein expression levels at cortisol levels >1 microM. This is the first study to show functional and molecular regulation of system A by cortisol in BeWo cells. It is also the first study to identify which system A isoform is regulated. These results suggest that cortisol may be involved in upregulation of system A in the placenta to ensure sufficient amino acid supply to the developing fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号