首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[14C]Cholesterol was injected into fifth-instar larvae of Manduca sexta, and the metabolites were isolated and identified from 8-day-old male and female pupae. A major portion of the metabolized cholesterol was esterified either with a sulfate group or with fatty acids. The predominant ecdysteroid metabolites were 20-hydroxyecdysone, 20,26-dihydroxyecdysone, 20-hydroxyecdysonoic acid, and 3-epi-20-hydroxyecdysonoic acid. Smaller amounts of ecdysteroids were identified as conjugates of 26-hydroxyecdysone, 3-epi-20-hydroxyecdysone, 20,26-dihydroxyecdysone, and its 3α-epimer. The metabolic profiles were similar for both male and female pupae. The two ecdysteroid acids were identified by nuclear magnetic resonance spectroscopy and chemical ionization mass spectrometry and by mass spectral analyses of their methyl esters. Detection of 3-epi-20-hydroxyecdysonoic acid as a major metabolite is significant, as its occurrence has been scarcely reported. 3-Epiecdysteroid acid formation is discussed as a possible ecdysteroid-inactivating pathway that may be operating specifically in lepidopterous insects or in particular developmental stages such as eggs or pupae.  相似文献   

2.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   

3.
HPLC allowed separation of twelve major labeled compounds after injection of 3H-ecdysone into Pieris pharate pupae. These compounds were identified as six pairs of metabolites (3α and 3β epimers), comprising ecdysone, 20-hydroxyecdysone, 26-hydroxyecdysone, 20,26-dihydroxy-ecdysone and the polar metabolites P and 20-hydroxy-P. These last two products could not be enzymatically split by any hydrolase tested and are weak acids arising respectively from 26-hydroxyecdysone and 20,26-dihydroxyecdysone. They might be 26-oic compounds.Epimerization appears as a fundamental inactivation process in Pieris and could well be a general characteristic of closed systems (eggs and pupae). No significant amounts of hydrolyzable conjugates were detected in our biological system (pharate pupae and pupae).  相似文献   

4.
Ecdysone metabolism in Pieris brassicae during the feeding last larval stage was investigated by using 3H-labeled ecdysteroid injections followed by high-performance liquid chromatographic (HPLC
  • 1 Abbreviations: 3DE = 3-dehydroecdysone; 3D20E = 3-dehydro-20-hydroxyecdysone; 2026E = 20,26-dihydroxyecdysone; E = ecdysone; Eoic = ecdysonoic acid; 2026E′ = 3-epi-20,26-dihydroxyecdysone; E′ = 3-epiecdysone; E′oic = 3-epiecdysonoic acid; E′8P = 3-epiecdysone 3-phosphate; 20E′ = 3-epi-20-hydroxyecdysone; 20E′3P = 3-epi-20-hydroxyecdysone 3-phosphate; FT = Fourier transform; HPLC = high-performance liquid chromatography; 20E = 20-hydroxyecdysone; 20Eoic = 20-hydroxyecdysonoic acid; NMR = nuclear magnetic resonance; NP-HPLC = normal phase HPLC; RP-HPLC = reverse phase HPLC; TFA = trifluoroacetic acid; Tris = tris(hydroxymethyl)-aminomethane.
  • ) analysis of metabolites. Metabolites were generally identified by comigration with available references in different HPLC systems. Analysis of compounds for which no reference was available required a large-scale preparation and purification for their identification by 1H nuclear magnetic resonance spectrometry. The metabolic reactions affect the ecdysone molecule at C-3, C-20, and C-26, leading to molecules which are modified at one, two, or three of these positions. At C-20, hydroxylation leads to 20-hydroxyecdysteroids. At C-26, hydroxylation leads to 26-hydroxyecdysteroids which can be further converted into 26-oic derivatives (ecdysonoic acids) by oxidation. At C-3, there are several possibilities: there may be oxidation into 3-dehydroecdysteroids, or epimerization possibly followed by phosphate conjugation. Thus, injected 20-hydroxyecdysone was converted principally into 20-hydroxyecdysonoic acid, 3-dehydro-20-hydroxyecdysone, and 3-epi-20-hydroxyecdysone 3-phosphate. Labelled ecdysone mainly gave the same metabolites doubled by a homologous series lacking the 20-hydroxyl group.  相似文献   

    5.
    In unparasitized 4th and 5th-instar larvae of Trichoplusia ni and in 4th-instar larvae parasitized by Chelonus sp. 20-hydroxyecdysone, 20,26-dihydroxyec-dysone, and 20-hydroxyecdysonoic acid were the predominant metabolites formed 2 h after injection of [3H]ecdysone. Other unidentified metabolites were seen, but none seemed to be specific for either parasitized or unparasitized larvae. The major difference between parasitized and unparasitized larvae was seen with respect to the quantity of apolar (unidentified) and polar metabolites (20-hydroxyecdysonoic acid and unidentified ones), which were produced to a greater extent in parasitized larvae. Ecdysone was rapidly converted into 20-hydroxyecdysone and the other polar metabolites in all stages investigated, and the parasitoid seemed not to affect the conversion of ecdysone into 20-hydroxyecdysone. When analyzing the fate of [3H]ecdysone in host and parasite separately, at a stage when the parasite drinks hemolymph of its host, we observed that 10–20% of the radioactivity was recovered from the parasitoid. Analysis of the parasitoid's ecdysteroids revealed that ecdysone and 20-hydroxyecdysone represented only a small proportion of the recovered labeled ecdysteroids, the majority being apolar and polar metabolites. Our data suggest that the parasitoid takes up ecdysteroids from its host, converts them, and to some extent releases apolar metabolites into the host.  相似文献   

    6.
    A method was developed to determine in the same extract juvenile hormone and various types of ecdysteroids in precisely staged eggs and larvae of Trichoplusia ni. Ecdysteroids were tentatively identified on the basis of their retention time in ion suppression reversed-phase HPLC and their cross-reactivity with two relatively non-specific, complimentary antibodies, whereas juvenile hormone was identified using reversed-phase HPLC combined with Galleria bioassay. Freshly laid eggs contained low levels of immunoreactive ecdysteroids. Mid-polar ecdysteroids increased in the phase of segmentation (14-18 h) and 1st larval cuticle formation (36-44 h), when 20-hydroxyecdysone and 20,26-dihydroxyecdysone were found to be predominant. Only traces of ecdysone and 26-hydroxyecdysone were seen. Toward hatching ecdysteroids decreased and represented mainly compounds more polar than 20,26-dihydroxyecdysone. In larval development ecdysteroids were low at the beginning of the feeding phases, increased toward cessation of feeding, and reached highest levels 12-15 h before ecdysis. In feeding stages ecdysone and 20-hydroxyecdysone were predominant, whereas in molting stages they were seen together with 20,26-dihydroxyecdysone and 20-hydroxyecdysonoic acid. The juvenile hormone titer was very low in freshly laid eggs and was high (approximately 25 ng/g) in embryos at the stage of 1st larval cuticle formation and eye pigmentation. In eggs we tentatively identified juvenile hormones I and II, whereas in larval stages juvenile hormone II appeared to be the predominant or exclusive juvenile hormone. Its titer fluctuated rapidly and was high in early 1st-instar larvae and again before the molts into the 3rd, 4th, and 5th instar. Highest titers were reached concomitant with the peak in 20-hydroxyecdysone 12-15 h before ecdysis.  相似文献   

    7.
    Peaks of ecdysteroids were observed during the different phases of embryonic development of intact Carausius eggs or eggs precociously deprived of their exochorion and cultivated under paraffin oil. Several groups of ecdysteroids were separated and analyzed by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) combined with radioimmunoassay. Ecdysteroids were similar in the two categories of eggs, including high-polarity products (essentially conjugates hydrolyzable by Helix pomatia digestive juice, or alkaline phosphatase), possible ecdysonoic acids (unhydrolyzable polar substances), free hormones, and nonpolar ecdysteroids. Four ecdysteroids were identified by co-elution during HPLC with reference compounds of 20,26-dihydroxyecdysone, 20-hydroxyecdysone, ecdysone, and 2-deoxy-20-hydroxyecdysone. Concentrations of these substances (free and conjugated forms) were studied during the different stages of embryonic development: 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone were the major free ecdysteroids. They showed parallel variations with large peaks at stages VI8 and VII6 whereas ecdysone titers were consistently low. Injected labelled ecdysone was converted efficiently into 20-hydroxyecdysone, and both compounds underwent 26-hydroxylation and/or conjugation to polar or apolar metabolites.  相似文献   

    8.
    The metabolism of [3H]-ecdysone has been investigated at times of low and high endogenous ecdysteroid tit re, in early and late fifth-instar Schistocerca gregaria larvae, respectively. Ecdysone-3-acetate, 20-hydroxyecdysone, and 20,26-dihydroxyecdysone were identified as metabolites in both the free form and as polar conjugates. Comparison of the intact polar conjugates of the ecdysteroid acetates on two HPLC systems with the corresponding authentic compounds indicated that they were 3-acetylecdysone-2-phosphate and 3-acetyl-20-hydroxyecdysone-2-phosphate. Other major polar metabolites were identified as ecdysonoic acid and 20-hydroxyecdysonoic acid. Ecdysone metabolism in fifth-instar S. gregaria is apparently an age-dependent process. Early in the instar, excretion of both free and conjugated ecdysteroids, as well as ecdysteroid 26-acids, occurs. At this stage the level of ecdysteroid acetates in the conjugated (phosphate) form is high, in contrast to the free ecdysteroids, where ecdysone predominates. When the endogenous hormone titre is high, the formation of ecdysteroid acetates is less, the major excreted matabolites at that stage being conjugated 20-hydroxyecdysone together with ecdysteroid-26-acids, but little free ecdysteroids. Acetylation of ecdysone occurs primarily in the gastric caecae. Ecdysone-3-acetate (mainly as polar conjugate) is also a major product of ingested ecdysone in early fifth-instar Locusta migratoria.  相似文献   

    9.
    Ecdysteroid levels in larvae and pupae of Anastrepha suspensa (Diptera: Tephritidae) were measured by radioimmunoassay. These levels were correlated with histological changes throughout the development of the post-embryonic stages. Ecdysteroid levels increase rapidly throughout the last-larval instar and on the last day of this stage are 283 pg equivalents of 20-hydroxyecdysone per insect (14.5 ng/g) when wandering behaviour is initiated. At the end of this period the puparium is formed and within 24 h, the ecdysteroid rises to its highest peak (625 pg equivalents of 20-hydroxyecdysone/insect). Larval-pupal apolysis is initiated within 24 h later and the pupal cuticle is then secreted. Two days later, the ecdysteroids reach their lowest levels (75 pg equivalents of 20-hydroxyecdysone/insect or 0.6 ng/g) and most of the larval fat body and other tissues have been histolysed. In 5- to 10-day old pupae ecdysteroid levels again increase and remain relatively high throughout. During this period the larval epidermis is replaced by imaginal epidermis, imaginal discs begin to proliferate and the adult cuticle is secreted. Ecdysteroid levels finally fall 2 days prior to adult emergence. HPLC determinations indicate that 20-hydroxyecdysone is the predominant free ecdysteroid, and along with ecdysone, is readily detectable in all postembryonic stages of this species. An unusually high and unexplained peak of 20-hydroxyecdysone occurs in the pharate adult. This peak probably consists of ecdysone metabolites with retentions similar to that of 20-hydroxyecdysone and to which the antiserum is sensitive.  相似文献   

    10.
    《Insect Biochemistry》1986,16(1):65-82
    The metabolism and distribution of endogenous ecdysone and injected [3H]ecdysone were studied during the pupal-adult development of Manduca sexta. Well-characterized antisera were used to detect and quantify endogenous metabolites by radioimmunoassay (RIA) following their separation by ion-suppressed reverse phase, and normal phase, high performance liquid chromatography. Identical chromatographic procedures were employed to determine the metabolic fate of the [3H]ecdysone in the haemolymph pool. These studies revealed the sequential appearance in the haemolymph and gut of progressively oxidized metabolites of ecdysone—hydroxylation at C-20 was followed by hydroxylation at C-26. The data are suggestive of both the induction of the steroid hydroxylases (oxidases) by substrate or other effector substances and the possible coordination of developmental events by ecdysteroids other than 20-hydroxyecdysone.In the haemolymph, two highly-polar conjugates of ecdysone were observed together with conjugates of the other free ecdysteroids, especially those hydroxylated at C-26. In contrast, relatively little 20-hydroxycdysone conjugate was detected in the insect. As adult development proceeded, both endogenous and radiolabelled ecdysteroids were increasingly localized in the gut, so that just prior to eclosion most ecdysteroids were present in the meconium of the high gut (rectal pouch). The peak titres and the kinetics of appearance of ecdysone, 20-hydroxyecdysone, and 20,26-dihydroxyecdysone were similar for both haemolymph and gut (and for males and females), but considerably higher levels of C-26 oxidized (acid) metabolites of ecdysone and 20-hydroxyecdysone were localized in the gut. Although levels of highly-polar ecdysteroid conjugates found in the haemolymph and gut were similar, considerable amounts of three less polar ecdysone conjugates, of 3-α-epimers of ecdysone and 20-hydroxyecdysone, and of a substance tentatively identified as 2-deoxyecdysone were found only in the gut. Whether ionized, conjugated, or free, the gut ecdysteroids did not appear to equilibrate with the haemolymph compartment.Differences were observed in the metabolism kinetics of exogenously administered radiolabelled ecdysone when compared to the endogenous ecdysteroids; and some RIA positive gut metabolites did not become significantly radiolabelled. This suggests that injection of ecdysone may not simulate the endogenous secretion of ecdysone or its subsequent metabolism and distribution completely accurately.  相似文献   

    11.
    Testes from late last stage larvae of the tobacco budworm, Heliothis virescens, were incubated with [3H]ecdysone and [3H]cholesterol. [3H]Ecdysone was converted to six other major ecdysteroids, identified by cochromatography in reverse-phase high-pressure liquid chromatography (RPHPLC); four of them were verified by normal-phase HPLC. A highly polar fraction, moderately polar ecdysteroids (20,26-dihydroxyecdysone, 3-epi-20-hydroxyecdysone, and 20-hydroxyecdysone) and low-polarity ecdysteroids, including 2-deoxyecdysone, were detected after incubation with [3H]ecdysone. Compounds that reacted positively to antibodies to progesterone and testosterone were detected in the low-polarity fractions. Testes were incubated in fractions corresponding to each of the major ecdysteroid peaks derived from [3H]ecdysone metabolism. Although most of the radioactive ecdysteroid fractions were further metabolized to high- and low-polarity endpoints, 88% of the [3H]20-hydroxyecdysone peak apparently remained unmetabolized. 20-Hydroxyecdysone may be the primary ecdysteroid product of testes of H. virescens. [3H]Cholesterol was not metabolized to any appreciable extent.  相似文献   

    12.
    Maturing eggs of the desert locust, Schistocerca gregaria, contain a variety of ecdysteroid (insect moulting hormone) conjugates and metabolites, four of which have been previously isolated from polar extracts and identified as ecdysonoic acid, 20-hydroxyecdysonoic acid, 3-acetylecdysone 2-phosphate and ecdysone 2-phosphate. In the present study we have isolated eight additional ecdysteroids from similar late-stage eggs by high-performance liquid chromatography. The 22-phosphate esters of ecdysone, 2-deoxyecdysone, 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone, all of which were first identified as ecdysteroid components of newly-laid eggs of S. gregaria, were identified by co-chromatography with authentic compounds and by physicochemical techniques. The remaining compounds were identified as 3-acetyl-20-hydroxyecdysone 2-phosphate, 3-epi-2-deoxyecdysone 3-phosphate, 3-acetylecdysone 22-phosphate and 2-acetylecdysone 22-phosphate by fast atom bombardment mass spectrometry, p.m.r. spectroscopy and analysis of the steroid moieties after enzymic hydrolysis. The latter two compounds, after isolation, are susceptible to nonenzymic acetyl migration and deacetylation to give mixtures of ecdysone 22-phosphate and its 2- and 3-acetate derivatives. The possible role and significance of these ecdysteroid conjugates with respect to the control of hormone titres in insect eggs is discussed.  相似文献   

    13.
    Six naturally occurring C27 ecdysteroids were isolated and identified from the tobacco hornworm during pupal-adult development five days after peak titer of molting hormone activity. In order of decreasing quantities the hormones were: 20,26-dihydroxyecdysone, 3-epi-20-hydroxyecdysone, 20hydroxyecdysone, 3-epi-20,26-dihydroxyecdysone, 3-epi-ecdysone, and ecdysone. 20-Hydroxyecdysone, in an earlier study, was the major molting hormone present at peak titer during pupal-adult development. The major ecdysteroid present during embryonic development in this insect, 26-hydroxyecdysone, was not detected. The copresence of all six of these ecdysteroids from a single developmental stage of an insect provides information on the metabolic interrelationships that exist among these steroids and on their possible function(s) in insects. The 3alpha-ecdysteroids were far less active than the 3 beta-epimers in the house fly assay. The significance of epimerization is discussed.  相似文献   

    14.
    The levels of both free and conjugated ecdysteroids, maternally labeled from [14C]cholesterol, of six different age groups of Manduca sexta eggs were quantitatively determined. Eggs 0–1-h old contain about 2.5 and 35 μ/g of the 2- and 26-phosphates of 26-hydroxyecdysone, respectively, and 1 μg/g of 26-hydroxyecdysone. During embryogenesis of 26-hydroxyedcdysone 26-phosphate is hydrolyzed to 26-hydroxyecdysone, which reaches a peak titer in 1–18-h-old eggs; the level of 26-hydroxyecdysone 2-phosphate remains rather constant. Additionally, other metabolic modifications such as hydroxylation, conjugation, epimerization, and oxidation are occurring; and as the level of the 26-hydroxyecdysone 26-phosphate decreases there is a progression of other ecdysteroids. C-20 hydroxylation first appears in 24–40-h-old eggs and reaches peak activity in 48–64-h-old eggs, where 20-hydroxyecdysone and 20, 26-dihydroxyecdysone are both present at peak titer but the latter is the major free ecdysteroid. Ecdysone is observed at measurable levels only in the three age groups of eggs between 1 and 64 h-old. C-3 epimerase activity also appears at 24–40 h and continually increases throughout embryogenesis to the point that 3-epi-26-hydroxyecdysone and 3-epi-20, 26-dihydroxyecdysone are the major free ecdysteroids in 96-h-old eggs. A new ecdysteroid conjugate, 26-hydroxyecdysone 22-glucoside, first appears at 24–40h and becomes the major conjugate in 72–80-h-old eggs; it represents an apparent end-product as its peak titer is reached and maintained throughout the final embryonic stages. 20-Hydroxyecdysonoic acid occurs in 48–64-h-old eggs, and along with 3-epi-20-hydroxyecdysonoic and ecdysonoic acids in 72–88-h-old eggs. 20-Hydroxyecdysonoic acid peaks during the latter time interval, and as its titer subsequently falls, there is a concurrent increase in the level of 3-epi-20-hydroxyecdysonoic which was identified as the second major component of the ecdysteroid conjugate fraction of 0–1-h-old larvae. Our results indicate that there is little or no biosynthesis of ecdysteroids during embryogenesis; that the materal ecdysteroid conjugate 26-hydroxyecdysone 26-phosphate serves as source for 26-hydroxyecdysone and the numerous metabolites; that 26-hydroxyecdysone and 20,26-dihydroxyecdysone may be the active hormones during embryonic development; and that glucosylation, epimerization, and formation of acids cosntitute inactivation processes. A scheme of the proposed pathways involved in the metabolism of 26–hydroxyecdysone 26-phosphate in the developing eggs of m. sexta is presented.  相似文献   

    15.
    《Insect Biochemistry》1988,18(7):729-734
    Ecdysone and 20-hydroxyecdysone metabolism was investigated in third instar Drosophila larvae both in vivo by injecting radiolabelled ecdysteroids and in vitro by incubating various tissues with labelled ecdysteroids.Ecdysone metabolism proceeds through different pathways: (1) C-20 hydroxylation; (2) C-26 hydroxylation and C-26 oxidation leading to the formation of 26-hydroxyecdysteroids (26-hydroxyecdysone and 20,26-dihydroxyecdysone) and acidic compounds (ecdysonoic acid and 20-hydroxyecdysonoic acid); C-3 oxidation and C-3 epimerization then conjugation leading to the formation of 3-dehydrocompounds (3-dehydroecdysone and 3-dehydro-20-hydroxyecdysone), 3-epimers (3-epiecdysone and 3-epi-20-hydroxyecdysone) and conjugates (only one conjugate was tentatively characterized as 3-epi-20-hydroxyecdysone-3-phosphate). 3-Dehydrocompounds are the major metabolites formed in third instar Drosophila larvae and C-3 oxidation occurs in various tissues. Experiments using tritiated cholesterol provided evidence that 3-dehydroecdysone and 3-dehydro-20-hydroxyecdysone are true endogenous ecdysteroids in Drosophila larvae.  相似文献   

    16.
    Total ecdysteroid levels as well as concentrations of several individual ecdysteroids were determined for hemolymph and testes of fifth instars, pupae, and pharate adults of the European corn borer, Ostrinia nubilalis (Hubner). For total levels, the patterns of fluctuation in hemolymph and testes were similar, but the concentrations in testes were lower than those in hemolymph. In both hemolymph and testes there were two ecdysteroid peaks: the first just prior to the formation of the pharate pupa, the second just prior to the formation of the pharate adult. An examination of ecdysteroid profiles revealed some important differences. Ecdysone was either absent or present at extremely low levels in larval testes, whereas in hemolymph there was a premolt ecdysone peak. In pupal testes, ecdysone was present, but levels of 26-hydroxyecdysone were much lower than those in hemolymph. Thus, in regard to ecdysteroids, testes have the ability to control their own internal milieu.  相似文献   

    17.
    After ingestion of various amounts of either [3H]ecdysone or [3H]20-hydroxyecdysone (0.8 ng to 10 μg) by sixth instar larvae of the Egyptian cotton leafworm Spodoptera littoralis, apolar metabolites are rapidly detected in the gut and frass. Hydrolysis of the apolar products with Helix hydrolases releases solely [3H]ecdysone or [3H]20-hydroxyecdysone, respectively. This, coupled with the formation of chemical derivatives (acetonide and acetate) which cochromatograph with authentic reference compounds on hptlc and hplc demonstrates that these apolar metabolites consist of ecdysone or 20-hydroxyecdysone esterified at C-22 with common long-chain fatty acids. The major fatty acids have been identified by RP-hplc and their contribution to the mixture determined. In contrast, [3H]ecdysone injected into the haemolymph of S. littoralis is metabolized to yield 20-hydroxyecdysone, ecdysonoic acid, and 20-hydroxyecdysonoic acid. Thus, two different pathways exist for the metabolism of ecdysteroids in this species. In addition to an essentially polar pathway operating on injected and endogenous ecdysteroids, exogenous ecdysteroids entering the gut of S. littoralis are detoxified, yielding apolar ecdysteroid 22-fatty acyl esters which are rapidly excreted. The significance of these results in relation to the effects of ingested ecdysteroids on S. littoralis is discussed. Arch. Insect Biochem. Physiol. 34:329–346, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    18.
    Normal and reverse-phase high-performance liquid chromatography in conjunction with radioimmunoassay and mass spectrometry were used to identify the free and conjugated ecdysteroids (after enzymatic hydrolysis) from day-4 pupae of the gypsy moth, Lymantria dispar L. Seven ecdysteroids were searched for, but only 20-hydroxyecdysone (964 ng/g fresh weight) and ecdysone (367 ng/g fresh weight) were detected. Analysis of conjugated ecdysteriods after liberation by hydrolysis also indicated the presence of 20-hydroxyecdysone (21.6 ng/g fresh weight) and ecdysone (2.4 ng/g fresh weight). Neither 26-hydroxyecdysone nor the 3α-epimers of 20-hydroxyecdysone or ecdysone were detected.  相似文献   

    19.
    Insects convert ecdysone and 20-hydroxyecdysone into their corresponding 26-oic derivatives, named ecdysonoic acid and 20-hydroxyecdysonoic acid respectively. The conversion takes piace in several tissues and can either be the only pathway for converting ecdysone into highly polar ecdysteroids, or coexist with various conjugating mechanisms. 20-Hydroxyecdysonoic acid was isolated from Pieris brassicae pupae as its methyl ester derivative. Its chemical structure was identified by Cl/D mass spectrometry and compared with a synthetic compound (20-hydroxy-25-deoxyecdysonoic acid) chemically prepared by oxidation of inokosterone (20,26-dihydroxy-25-deoxyecdysone). Natural ecdysonoic acids appear to exist as a mixture of 25R and 25S isomers. The significance of this pathway is discussed in comparison with similar reactions occuring in the metabolism of steroid hormones in vertebrates.  相似文献   

    20.
    棉铃虫蛹期血淋巴的蜕皮甾类   总被引:5,自引:1,他引:4  
    目前为止仅在少数几种昆虫中研究过蛹期的蜕皮激素。关于蜕皮甾类的性质分析,结果也颇不一致。本文采用放射免疫分析、薄层层析、高压液相色谱及质谱对棉铃虫Heliothis armigera蛹血淋巴内的蜕皮激素进行了研究。结果如下:1.物理-化学方法证明蛹血淋巴内存在二种蜕皮甾类:蜕皮酮和20-羟基蜕皮酮。2.蛹期蜕皮甾类滴度呈一宽峰,高峰出现在化蛹后的第5天(3435ng/ml)。3.在高峰时,蜕皮酮与20-羟基蜕皮酮的比例为1:3.57,说明20-羟基蜕皮酮是主要的蜕皮甾类。4.比较雌雄两性蛹的蜕皮甾类滴度,未见明显差异。研究表明在棉铃虫中影响成虫发育的主要激素是20-羟基蜕皮酮而不是蜕皮酮。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号