首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in spermatozoan ultrastructure have been studied during spermiogenesis of the slug Arion rufus (Gastropoda, Pulmonata, Stylommatophora). The ovotestis was investigated during the male stage, definite by the presence of spermatozoa. Some peculiar characteristics are shown by early spermatids: Around the nucleus, the nuclear envelope presents two thick layers located on opposite sides, the apical and basal plates, that will determine the antero-posterior axis of the spermatid. The chromatin, first dispersed throughout the nucleoplasm gives later on thick filaments which become attached over the inner surface of these plates. The chromatin filaments are then arranged parallel to the antero-posterior axis as the nucleus elongates. The position of the plates determines the antero-posterior axis of the spermatid. In the mature spermatozoa, the chromatin is more condensed and the nucleus presents an helical organization. The acrosome and flagellum are respectively attached externally to the center of the apical and basal plates. The acrosome consists of a membrane-bound vesicle and forms a column of homogeneous material. In the middle piece, the mitochondria have been transformed into a mitochondrial derivate by the way of a complicated metamorphosis. The axoneme is surrounded by three mitochondrial helices but only one of them contains glycogene granules. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The spermatozoon of Chiton marginatus is a long uniflagellate cell displaying structural features of “modified sperm.” The nucleus presents a conical shape with a long apical cylindrical extension. The chromatin is homogeneously dense. Scattered inside the condensed nucleus, a few nuclear lacunae are visible. The acrosomal complex is lacking. Some mitochondria are located in a laterofrontal structure side by side with the nucleus. The typical midpiece is absent. The cytoplasm forms a thin layer around the nucleus and the mitochondria. The proximal centriole is in a basal nuclear indent. The distal centriole serves to form the axoneme tail with the usual microtubular pattern. During nuclear maturation, the early spermatid nucleus is spherical and contains fine granular chromatin patches. The nuclear envelope shows a deposit of dense material at the base of the nucleus, forming a semicircular invagination occupied by a flocculent mass. In middle spermatid stage, the chromatin gets organized in filaments, coiled as a hank, attached over the inner surface of the basal thickening of the nuclear envelope. The nucleus starts to elongate anteroposteriorly. At the pointed apical portion of the spermatid, a group of microtubules is observed seeming to impose external pressure to the nucleus giving rise to the long apical nuclear point. The mitochondria have a basal position. Late spermatids have an elongated conical nucleus. The chromatin filaments are further condensed, and lacunae appear inside the nucleus. Some mitochondria migrate to a lateral position.  相似文献   

3.
Marigo, A.M., Bâ, C.T. and Miquel, J. 2011. Spermiogenesis and spermatozoon ultrastructure of the dilepidid cestode Molluscotaenia crassiscolex (von Linstow, 1890), an intestinal parasite of the common shrew Sorex araneus. —Acta Zoologica (Stockholm) 92 : 116–125. Spermiogenesis in Molluscotaenia crassiscolex begins with the formation of a differentiation zone containing two centrioles. One of the centrioles develops a flagellum directly into the cytoplasmic extension. The nucleus elongates and later migrates along the spermatid body. During advanced stages of spermiogenesis, a periaxonemal sheath appears in the spermatid. Spermiogenesis finishes with the appearance of a single helicoidal crested body at the base of the spermatid and, finally, the narrowing of the ring of arched membranes causes the detachment of the fully formed spermatozoon. The mature spermatozoon of M. crassiscolex exhibits a partially detached crested body in the anterior region of the spermatozoon, one axoneme, twisted cortical microtubules, a periaxonemal sheath, and a spiralled nucleus. The anterior spermatozoon extremity is characterized by the presence of an electron‐dense apical cone and a single spiralled crested body, which is attached to the sperm cell in the anterior and posterior areas of region I, whereas in the middle area it is partially detached from the cell. This crested body is described for the first time in cestodes. The posterior extremity of the male gamete exhibits only the disorganizing axoneme. Results are discussed and compared particularly with the available ultrastructural data on dilepidids sensu lato.  相似文献   

4.
Spermiogenesis in the lizard, Iguana iguana, was studied by transmission and scanning electron microscopy. During this process, structures such as the acrosomal complex in the spermatid head and the axonemal complex in the mid and principal pieces of the flagellum are formed. The nuclear content is initially compacted into thick, longitudinal chromatin filaments. Nuclear shape is determined by further compaction and by the manchette, a layer of microtubules surrounding the head. The acrosomal complex originates from Golgi vesicles and the interaction between the proacrosomal vesicle and the nucleus. The midpiece consists of a pair of centrioles, surrounded by a fibrous sheath and rings of simple and modified mitochondria. The centrioles sustain the axoneme that appears at the end of the midpiece. The axoneme extends throughout the principal piece of the flagellum with the 9 + 2 pattern, still surrounded by the fibrous sheath. In the endpiece, the axoneme continues, surrounded only by the plasma membrane. In the lumen of seminiferous tubules, immature spermatozoa retain abundant residual cytoplasm.  相似文献   

5.
Miquel, J., Torres, J., Foronda, P. and Feliu, C. 2010. Spermiogenesis and spermatozoon ultrastructure of the davaineid cestode Raillietina micracantha. — Acta Zoologica (Stockholm) 91 : 212–221 The spermiogenesis and the ultrastructural organization of the spermatozoon of the davaineid cestode Raillietina micracantha are described by means of transmission electron microscopy. Spermiogenesis begins with the formation of a zone of differentiation containing two centrioles. One of the centrioles develops a free flagellum that later fuses with a cytoplasmic extension. The nucleus migrates along the spermatid body after the proximodistal fusion of the flagellum and the cytoplasmic extension. During advanced stages of spermiogenesis a periaxonemal sheath and intracytoplasmic walls appear in the spermatids. Spermiogenesis finishes with the appearance of two helicoidal crested bodies at the base of spermatids and, finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of R. micracantha is a long and filiform cell, tapered at both ends, which lacks mitochondria. It exhibits two crested bodies of different lengths, one axoneme of the 9 + ‘1’ pattern of trepaxonematan Platyhelminthes, twisted cortical microtubules, a periaxonemal sheath, intracytoplasmic walls, granules of glycogen and a spiralled nucleus. The anterior extremity of the spermatozoon is characterized by the presence of an electron‐dense apical cone and two spiralled crested bodies while the posterior extremity of the male gamete exhibits only the axoneme and an electron‐dense posterior tip.  相似文献   

6.
Lino‐Neto, J., Báo, S. N. and Dolder, H. 2000. Structure and Ultrastructure of the Spermatozoa of Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman and Platner (Hymenoptera: Trichogrammatidae). —Acta Zoologica (Stockholm) 81 : 205–211 Spermatozoa of the Trichogramma pretiosum and T. atopovirilia are very slender and long, about 0.35 µm in diameter and 283 µm and 106 µm in length, respectively. Under light microscopy, they appear wavy along their entire length. The head contains a small acrosome which, together with the initial nuclear region is surrounded by an ‘extracellular sheath’, from which innumerable filaments irradiate. The nucleus is filled with homogeneous, compact chromatin and is attached to the flagellum by an electron dense centriolar adjunct, which extends anteriorly from the nuclear base. The flagellum consists of an axoneme with the 9 + 9 + 2 microtubule arrangement pitched in a long helix, as well as a pair of spiralling mitochondrial derivatives which coil around the axoneme. Based on these characteristics, the sperm of these Trichogramma are very similar to the chalcidoids studied to date and differ from non‐chalcidoid Hymenoptera. They differ widely from the sperm of T. dendrolimi and T. ostriniae studied, where no helically twisted structure is shown. However, based on these results we argue that the spiralling of the flagellar structures is a synapomorphy for Trichogrammatidae as well as for Eulophidae + Eurytomidae + Pteromalidae.  相似文献   

7.
The formation of the flagellum in the spermatid of the Japanese land snail, Euhadra hickonis, is introduced by the appearance of a central indentation in the differentiated posterior side of the spherical nucleus early in spermiogenesis. One centriole moves to this part of the cell, changes in several structural respects and acquires a short-lived “centriole adjunct”. At first it lies tangential to the nuclear surface as it begins to induce formation of the flagellar axoneme; then it turns so that its proximal end fits into the deepening nuclear indentation (“implantation fossa”). Cytoplasmic tubules appear to mediate this shift in direction. Internal changes in the centriolar components begin as it initiates formation of the axoneme, and continue throughout spermiogenesis. First, a dense “cap” forms at its proximal end, the microtubular triplets become doublets and a pair of singlets occupies the center of the complex. All these microtubules extend from the dense cap and are continuous with those of the axoneme. As the basal body (modified centriole) becomes set in the implantation fossa, the material of the centriole adjunct forms 9 strands, which are continuous with the peripheral coarse fibers when these develop. The microtubular doublets of the basal body are visible for a short time between the fiber strands; in the mature spermatozoon they are found embedded in the basal body portions of the coarse fibers in a degenerated form. Posterior to the basal body, however, they separate from the inner sides of the striated coarse fibers and become the doublets of the axoneme. The proximal part of the elongating axoneme lies in a posterior extension of the cell, in which glycogen particles and mitochondria are conspicuous. As the mitochondria unite into a sheath tightly surrounding the axoneme, the structure of their cristae changes to form a paracrystal-line “mitochondria derivative”, which consists of many layers close to the nucleus and progressively fewer posteriorly. Outside of this “primary sheath”, more modified mitochondria unite to form a “secondary sheath” of paracrystalline lamellae which encloses a compartment, filled with glycogen particles, that extends in a low-pitched helix nearly to the end of the flagellum. In the late spermatid, microtubules become arranged at regular intervals around the nucleus and secondary sheath of the flagellum for a short period while the remaining cytoplasm and spermatid organelles such as the Golgi complex are being discarded. The flagellum of the mature spermatozoon is 250–300 μm in length, tapering gradually from a diameter of ca 1 μm just behind the nucleus to less than 0.3 μm at its tip, as the result of reduction in the amount of stored glycogen, the number of paracrystalline lamellae and the diameter of the peripheral fibers.  相似文献   

8.
Spermiogenesis in the South American leptodactylid frog Odontophrynus cultripes was analyzed ultrastructurally. The spermatids undergo morphological modification while still enclosed in microtubule-rich processes of Sertoli cells. Electron-dense plates resembling junctional structures appear in regions at which the spermatids lie in close contact with the surface of Sertoli cell processes. Spermatid differentiation can be divided into five distinct stages based mainly on chromatin condensation. In the late stages, the densely compacted chromatin loses reactivity to ethanolic phosphotungstic acid (E-PTA). Helical arrangements of microtubules appear in the cytoplasm that surrounds the spermatid nucleus after the second stage. The acrosomal vesicle differentiates into a cone-shaped acrosome that caps the anterior region of the nucleus. The connecting piece, located in the flagellum implantation zone, has transverse striations, and is continuous with the axial rod. The tail is formed by a 9 + 2 axoneme, an undulating membrane, and an axial rod that is rich in basic proteins as demonstrated by E-PTA staining.  相似文献   

9.
Sperm ultrastructure has been studied in three species of the taxa Mecoptera and Siphonaptera. The spermatozoon of the scorpion fly Panorpa germanica shows an apical bilayered acrosome, a helicoidal nucleus, a centriolar region and a 9+2 flagellar axoneme helicoidally arranged around a long mitochondrial derivative. A second mitochondrial derivative is very short and present only in the centriolar region. A single accessory body is present and it is clearly formed as a prolongation of the centriole adjunct material. Two lateral lamellae run parallel to the nucleus. The snow fly Boreus hyemalis has a conventional sperm structure and shows a bilayered acrosome, a long nucleus, a centriolar region, two mitochondrial derivatives and two accessory bodies. The axoneme is of the 9+2 type and is flattened at the tail tip. Both P. germanica and B. hyemalis have two longitudinal extra-axonemal rods and have a glycocalyx consisting of longitudinal parallel ridges or filaments. The spermatozoon of the flea Ctenocephalides canis has a long apical bilayered acrosome, a nucleus, a centriolar region, a 9+2 axoneme wound around two unequally sized mitochondrial derivatives, and two triangular accessory bodies. In the posterior tail end the flagellar axoneme disorganises and a few microtubular doublets run helicoidally around the remnant mitochondrial derivative. The glycocalyx consists of fine transverse striations. In all three species, the posterior tail tip is characterised by a dense matrix embedding the disorganised axoneme. From this comparative analysis of the sperm structure it is concluded that Mecoptera, as traditionally defined, is monophyletic and that B. hyemalis is a member of Mecoptera rather than of Siphonaptera.  相似文献   

10.
We have previously reported that Sak57 (for Spermatogenic cell/Sperm-associated keratin of molecular mass 57 kDa) is an acidic keratin found in rat spermatocytes, spermatids, and sperm. Sak57 displays conserved amino acid sequences found in the 1A and 2A regions of the α-helical rod domain of keratins in human, rat, and mouse. We now report indirect immunofluorescence, confocal laser scanning microscopy and immunogold electron microscopy data showing that Sak57 is associated with the microtubular mantle of the manchette, a transient microtubular structure largely regarded as formed by tubulin and microtubule-associated proteins. The immunocytochemical localization of Sak57 was detected with a polyclonal antiserum to a multiple antigenic peptide (MAP) containing an amino acid sequence known to be present in the 2A region of the α-helical rod domain. During spermiogenic steps 8–12, Sak57 immunoreactive sites were restricted to microtubular mantle of the manchette which encircles the spermatid nucleus during shaping and chromatin condensation. At later stages (spermiogenic steps 12–14), Sak57 immunoreactive sites in the spermatid head region disappeared gradually as specific immunoreactivity appeared along the already assembled axoneme of the developing spermatid tail. Immunogold electron microscopy confirmed the presence of Sak57 immunoreactivity among microtubules of the manchette and on outer dense fibers and the longitudinal columns linking the ribs of the fibrous sheath. Mature spermatids (spermiogenic step 19) displayed tails with an immunofluorescent banding pattern contrasting with the lack of Sak57 immunoreactivity in the head region. Results from this study suggest that, during early spermiogenesis, a microtubular-Sak57 scaffolding is associated with the spermatid nucleus during shaping and chromatin condensation. During late spermiogenesis, the dispersion of the manchette coincides with the progressive visualization of Sak57 in the paraaxonemal outer dense fibers and longitudinal columns of the fibrous sheath in the developing spermatid tail. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The spermatozoon and some spermatid stages of Siboglinum (Pogonophora) have been examined by light and electron microscopy. In the spermatozoon a helical acrosome, a helical nucleus and a “body” with axonema follow each other in normal sequence. Head and tail are joined by a very short neck region containing two modified centrioles. The posterior portion of the nucleus is surrounded by a mitochondrial sheath consisting of three tightly wound mitochondrial helices. In the main portion of the tail the 9+2 unit is sorrounded by a granular sheath of dense material. In the neck region a centriole adjunct develops into a dense substance containing about nine rods. At an early stage, when the centriolar apparatus and flagellum become associated with the nucleus, three large mitochondria with fairly regular cristae are seen at the base of the nucleus. A well developed Golgi apparatus is present in early stages. Rows of microtubules are observed encircling the spermatid nucleus. Compared with the primitive type of spermatozoon the pogonophore sperm shows elongated and specialized nucleus, acrosome and mitochondria. It is concluded that the ancestral form must have had a fairly primitive spermatozoon and that evolution has proceeded towards a modified sperm with complicated spiral structure in connection with the evolution of a modified biology of fertilization, viz. specialized spermatophores. It is not known how the spermatophore discharges the spermatozoa nor how the spermatozoa find their way to the eggs. Two kinds of sperms are produced in the gonads of Siboglinum. The atypical sperm is smaller than the typical one.  相似文献   

12.
Asplenium trichomanes L. subsp. trichomanes spermatozoids are spirals of about five turns. Keels link the elements of the microtubular ribbon with the plates of the lamellar layer (LL) which are uninterrupted, parallel and curved with an inner angle of about 150°. Electron-opaque filaments connect the microtubules of the multilayered structure (MLS) and the osmiophilic crest, the LL and the MLS-associated mitochondrion and the latter and the plasmalemma. The nucleus occupies the 2.5–3 posterior turns and has an inner honeycomb-shaped chromatin mass and an outer highly condensed chromatin mass with randomly scattered electron-transparent areas. The basal bodies of the ca. 50 flagella are bounded by a reticulum of granular material which forms a plug inside their proximal region; the proximal region of the flagellum has a 9 + 0 pattern. The axoneme has a 9 + 2 pattern. Received: 15 January 1997 / Revision accepted: 1 April 1997  相似文献   

13.
Summary Spermiogenesis in one species from each of the arachnid groups Amblypygi and Uropygi is described by electron microscopy: The whip spider,Tarantula marginemaculata (Amblypygi), and the whip-scorpion,Mastigoproctus giganteus, (Uropygi). In both species the earliest spermatid has a spherical nucleus and soon acquires an anterior acrosome and a posterior flagellar tail. The flagellun is peculiar in having a 9 + 3 axonemal pattern. By the mid-spermatid stage, the nucleus becomes conspicuously elongated, possibly through the agency of a manchette of microtubules. In the late spermatid, the elongated nucleus begins to coil posteriorly; simultaneously the middle piece and the tail flagellum begin to retract into the cell body to form a coiled intracellular axonema. Membranous profiles appear in the peripheral cytoplasm, possibly to accommodate a decrease in the total area of plasma membrane. The mature sperm is a spherical cell, which includes the following organelles in twisted and fully coiled configuration: an elongated nucleus, an acrosome and an acrosomal filament, a long middle piece with helically arranged mitochondria and an intracellular axonema.  相似文献   

14.
Cytodifferentiation during spermiogenesis in Hydra littoralis was studied at the fine structural level. Concentration of nuclear material as well as specific orientation of granular and filamentous nuclear elements are apparent in two regions of the early spermatid: where the nuclear envelope is in contact with mitochondrial membranes at one pole of the cell and at an opposite region where the nucleus is closely apposed to the plasma membrane. Ultimately the mass of condensed nuclear material becomes concentrated at the mitochondrial pole of the cell. Additional electron-dense material is extruded from the nucleus into a large vacuole which is in continuity with the nuclear membrane as well as associated with Golgi lamellae and vesicles. Eventually all residual cytoplasm is sloughed, leaving the nucleus, mitochondria, and flagellum. These observations are suggestive of nucleocytoplasmic interactions during development, especially influences of mitochondria and plasma membranes on chromatin condensation.  相似文献   

15.
Spermiogenesis in the Nile tilapia, Oreochromis niloticus, was observed ultrastructurally. The process of spermatid differentiation can be divided into six distinct stages based mainly on changes in the nucleus of spermatids. During the latter half of the process, nuclear chromatin condenses progressively to form many dense globules, which ultimately adhere tightly to pack the head of mature spermatozoa. During chromatin condensation the nucleus diminishes in size, and part of the nuclear envelope and nucleoplasm forms a vesicular structure that is finally discarded from the cells together with an associated thin layer of cytoplasm. The spermatozoon comprises a roundish head, a relatively small midpiece, and a relatively short flagellum consisting of the usual 9+2 axoneme. No acrosomal structure is developed during spermiogenesis.  相似文献   

16.
Spermatozoa morphology has, for some years, been used to help answer some phylogenetic questions for Hymenoptera. This is the second study describing spermatozoa morphology of an Eulophidae species in which important characteristics were observed. Melittobia spermatozoa are spiralled and measure approximately 270mum in length. The head contains a small acrosome, apparently formed only by an acrosomal vesicle, which, together with the initial nuclear region, is surrounded by an extracellular sheath, from which innumerable filaments irradiate. The nucleus is helicoidal and completely filled with compact chromatin. A centriolar adjunct is observed at the nucleus-flagellum transition; it associates laterally with the nucleus and exhibits two small expansions, which reach around the centriole. In the flagellum there are two mitochondrial derivatives, which in cross-sections are asymmetric. In the derivative with the larger diameter, two distinct regions are observed, a small one, near the axoneme, with a clear "fissure" inside, and a larger region where the cristae occur. Both derivatives initiate at the nuclear base, but the larger diameter derivative finishes first, before the flagellum extremity. At the end of the axoneme, the accessory microtubules are the first to finish.  相似文献   

17.
Acrosomal development in the early spermatid of the rufous hare wallaby shows evidence of formation of an acrosomal granule, similar to that found in eutherian mammals, the Phascolarctidae and Vombatidae. Unlike the other members of the Macropodidae so far examined, the acrosome of this species appears to be fully compacted at spermiation and extends evenly over 90% of the dorsal aspect of the nucleus. During spermiogenesis, the nucleus of the rufous hare wallaby spermatid showed evidence of uneven condensation of chromatin; this may also be related to the appearance of unusual nucleoplasm evaginations from the surface of the fully condensed spermatid. This study was unable to find evidence of the presence of Sertoli cell spurs or nuclear rotation during spermiogenesis in the rufous hare wallaby. The majority of spermatozoa immediately before spermiation had a nucleus that was essentially perpendicular to the long axis of the sperm tail. Nuclei of spermatozoa found in the process of being released or isolated in the lumen of the seminiferous tubule were rotated almost parallel to the long axis of the flagellum; complete parallel alignment occurred during epididymal maturation. At spermiation spermatozoa have characteristically small cytoplasmic remnants compared to those of other macropods. Unlike the majority of macropodid spermatozoa so far described, the spermatozoa of the rufous hare wallaby showed little evidence of morphological change during epididymal transit. There was no formation of a fibre network around the midpiece or of plasma membrane specializations in this region; the only notable change was a distinctive flattening of midpiece mitochondria and scalloping of the anterior mitochondrial sheath to accommodate the sperm head. Preliminary evidence from spermiogenesis and epididymal sperm maturation supports the classification of the rufous hare wallaby as a separate genus but also indicates that its higher taxonomic position may need to be re‐evaluated.  相似文献   

18.
Spermiogenesis in the aplysiid, Aplysia kurodai (Gastropoda, Opisthobranchia) was studied by transmission electron microscopy, with special attention to acrosome formation and the helical organization of the nucleus and the other sperm components. In the early spermatid, the periphery of the nucleus differentiates into three characteristics parts. The first part is that electron-dense deposits accumulate on the outer nuclear envelope. This part is destined to be the anterior side of the sperm because a tiny acrosome is organized on its mid-region at the succeeding stage of spermiogenesis. The second part, in which electron-dense material attaches closely to the inner side of the nuclear envelope, is the presumptive posterior side. A centriolar fossa is formed in this part and the axoneme of the flagellum extends from the fossa. A number of lamellar vesicles derived from mitochondria assemble around the axoneme and form the flagellum complex. The third part is recognized by the chromatin which condenses locally along the inner nuclear envelope. During development of the spermatid, this part extends to form a spiral nucleus accompanied by chromatin condensation and formation of microtubular lamellae outside the extending nucleus.
Finally, in the mature sperm, a tiny, spherical acrosomal vesicle is detected at the apex. The slender nucleus, overlapping both the primary and secondary helices which are composed of different structural elements, winds around the flagellum axoneme.  相似文献   

19.
The sperm of Microstigmus arlei and Microstigmus nigrophthalmus are twisted in a spiral and consist of two regions: the head, formed by an acrosome and a nucleus, and the flagellum, formed by two asymmetric mitochondrial derivatives, a long centriolar adjunct, an axoneme (9+9+2) and two accessory bodies. The head shows a characteristic morphology. The acrosome is very long and is basically made up of a paracrystalline structure. In the central head region, the acrosome is inserted into the nucleus, which is observed coiling laterally around the paracrystalline structure. In the subsequent part of the spermatozoon the nucleus appears round in transverse sections, and over some length it is still penetrated by the acrosome until shortly distal to the flagellar insertion. At this point the nucleus forms an inverted cone-shaped projection. These morphological characteristics of acrosome and nucleus of the Microstigmus wasp have not been previously described in Apoidea and are useful for phylogenetic evaluation of this superfamily.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号