首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The digestive system of several species of sea spiders (Pycnogonida, Arthropoda) was studied by electron microscopy. It is composed of the foregut inside a long proboscis, a midgut and a hindgut. Lips near the three jaws at the tip of the proboscis receive several hundred ductules originating from salivary glands. These previously undetected glands open on the lips, a fluted, projecting ridge at the external hinge line of the jaws, i.e., to the outside of the mouth. This disposition suggests affinities to the chelicerate line. The trigonal esophagus within the proboscis contains a complex, setose filter device, operated by dedicated muscles, that serves to reduce ingested food to subcellular dimensions. The midgut has diverticula into the bases of all legs. Its cells differentiate from the basal layer and contain a bewildering array of secretion droplets, lysosomes and phagosomes. In the absence of a hepatopancreas, the midgut serves both digestive and absorptive functions. The cuticle-lined hindgut lies in the highly reduced, peg-like abdomen. Traditionally, pycnogonids have been claimed to have no excretory organ at all. Such a structure, however, has been located in at least one ammotheid, Nymphopsis spinosissima, in which a simple, but standard, excretory gland has been found in the scape of the chelifore. It consists of an end sac, a straight proximal tubule, a short distal tubule, and a raised nephropore. The end sac is a thin-walled and polygonal chamber, about 150 microm in cross section, suspended in the hemocoel of the appendage, its edges radially tethered to the cuticle at more than half a dozen locations. This wall consists of a filtration basement membrane, 1-4 microm thick, facing the hemocoel, and internally of a continuous carpet of podocytes and their pedicels. The podocytes, measuring maximally 10 by 15 microm, have complex contents, of which a labyrinthine system of connected intracellular channels stands out. These coated cisternae open into a central vacuole that often rivals the nucleus in size. The design of the organ closely approximates that of the primitive crustacean Hutchinsoniella macracantha.  相似文献   

3.
The system of muscle fibers associated with the brain and lateral nerve cords is present in all major groups of enoplan nemerteans. Unfortunately, very little is known about the functional role and spatial arrangement of these muscles of the central nervous system. This article examines the architecture of the musculature of the central nervous system in two species of monostiliferous nemerteans (Emplectonema gracile and Tetrastemma cf. candidum) using phalloidin staining and confocal microscopy. The article also briefly discusses the body‐wall musculature and the muscles of the cephalic region. In both species, the lateral nerve cords possess two pairs of cardinal muscles that run the length of the nerve cords and pass through the ventral cerebral ganglia. A system of peripheral muscles forms a meshwork around the lateral nerve cords in E. gracile. The actin‐rich processes that ramify within the nerve cords in E. gracile (transverse fibers) might represent a separate population of glia‐like cells or sarcoplasmic projections of the peripheral muscles of the central nervous system. The lateral nerve cords in T. cf. candidum lack peripheral muscles but have muscles similar in their position and orientation to the transverse fibers. The musculature of the central nervous system is hypothesized to function as a support system for the lateral nerve cords and brain, preventing rupturing and herniation of the nervous tissue during locomotion. The occurrence of muscles of the central nervous system in nemerteans and other groups and their possible relevance in taxonomy are discussed. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Crinoids are able to regenerate completely many body parts, namely arms, pinnules, cirri, and also viscera, including the whole gut, lost after self-induced or traumatic mutilations. In contrast to the regenerative processes related to external appendages, those related to internal organs have been poorly investigated. In order to provide a comprehensive view of these processes, and of their main events, timing and mechanisms, the present work is exploring visceral regeneration in the feather star Antedon meditteranea. The histological and cellular aspects of visceral regeneration were monitored at predetermined times (from 24 hours to 3 weeks post evisceration) using microscopy and immunocytochemistry. The overall regeneration process can be divided into three main phases, leading in 3 weeks to the reconstruction of a complete functional gut. After a brief wound healing phase, new tissues and organs develop as a result of extensive cell migration and transdifferentiation. The cells involved in these processes are mainly coelothelial cells, which after trans-differentiating into progenitor cells form clusters of enterocytic precursors. The advanced phase is then characterized by the growth and differentiation of the gut rudiment. In general, our results confirm the striking potential for repair (wound healing) and regeneration displayed by crinoids at the organ, tissue and cellular levels.  相似文献   

5.
T Roger  P Cabanie  J P Ferre 《Acta anatomica》1991,142(4):299-305
In the rat, topographic and X-ray studies of the caecum and ascending colon, together with microscopic anatomic observations of the ileal papilla and caecocolonic valve, showed that junction structures contribute to prevent the backflow of the caecal content into the ileum and to direct the ileal content within the caecum whatever the various positions of the caecum in the abdominal cavity.  相似文献   

6.
 Crinoid echinoderms can provide a valuable experimental model for studying all aspects of regenerative processes from molecular to macroscopic level. Recently we carried out a detailed study into the overall process of arm regeneration in the crinoid Antedon mediterranea and provided an interpretation of its basic mechanisms. However, the problem of the subsequent fate of the amputated arm segment (explant) once isolated from the animal body and of its possible regenerative potential have never been investigated before. The arm explant in fact represents a simplified and controlled regenerating system which may be very useful in regeneration experiments by providing a valuable test of our hypotheses in terms of mechanisms and processes. In the present study we carried out a comprehensive analysis of double-amputated arm explants (i.e. explants reamputated at their distal end immediately after the first proximal amputation) subjected to the same experimental conditions as the regenerating donor animals. Our results showed that the explants undergo similar regenerative processes but with some significant differences to those mechanisms described for normal regenerating arms. For example, whilst the proximal-distal axis of arm growth is maintained, there are differences in terms of the recruitment of cells which contribute to the regenerating tissue. As with normal regenerating arms, the present work focuses on (1) timing and modality of regeneration in the explant; (2) proliferation, migration and contribution of undifferentiated and/or dedifferentiated/transdifferentiated cells; (3) putative role of neural growth factors. These problems were addressed by employing a combination of conventional microscopy and immunocytochemistry. Comparison between arm explants and regenerating arms of normal donor adults indicates an extraordinary potential and regenerative autonomy of crinoid tissues and the cellular plasticity of the phenomenon. Received: 9 March 1998 / Accepted: 5 June 1998  相似文献   

7.
Crinoid echinoderms can completely and rapidly regenerate arms lost following self-induced or traumatic amputation. Arm regeneration in these animals therefore provides a valuable experimental model for studying all aspects of regenerative processes, particularly with respect to the nervous system and its specific contribution to regenerative phenomena. Taking into account the primary role of the nervous system in regeneration in other invertebrates, we have investigated the specific involvement of neural factors, viz. the monoamine neurotransmitters dopamine and serotonin, in arm regeneration of Antedon mediterranea. In the present work, the presence of classical monoamines has been revealed by employing specific immunocytochemical and histofluorescence tests in association with biochemical detection by means of high pressure liquid chromatography. The distribution pattern of these neurohumoral molecules at standard regenerative stages has been compared with that of normal non-regenerating arms. Results indicate that both dopamine and serotonin dramatically change in both their distribution and concentration during the repair and regenerative processes. Their remarkably enhanced pattern during regeneration and widespread presence at the level of both nervous and non-nervous tissues indicates that they are important neural growth-promoting factors in crinoid arm regeneration. Received: 18 December 1995 / Accepted: 23 February 1996  相似文献   

8.
Mandibles and stomachs of three Antarctic shrimp species (Nematocarcinus lanceopes, Notocrangon antarcticus, and Chorismus antarcticus) were investigated by means of scanning electron microscopy. Transmission electron microscopy of the midgut glands was applied to find out the nutritional status of the animals, which contained a broad variety of food items in their stomachs. In contrast to the Antarctic krill, the three carideans possess a dual filter system; primary filters in the cardia and secondary filters in the pyloric chamber. Morphologically, the mandibles and stomachs of the three species vary considerably; however, their food items are similar. We conclude that stomach contents do not really reflect the different modes of life or habitat preferences of the investigated species.  相似文献   

9.
10.
Summary Microscopic anatomy, functional morphology, and ultrastructure of the stomach of the antarctic krill Euphausia superba Dana were investigated by means of serial sections, scanning and transmission electron microscopy, and video technique. A separation of the stomach into an anterior part, called cardia, and a posterior part, called pylorus, became evident. Protrusions of the stomach into the midgut form the third region, called the funnel. The interior of the cardia is dominated by the two lateralia, originating from the side walls of the stomach. At their undersurface, they bear the primary filter. It separates the dorsal food channel from the ventral filtration channel, which is divided into two channels by a ventromedian ridge, the anteromedianum. Within the pylorus, the inferolateralia act in sealing the food channel from the filtration channel. In contrast to many other Malacostraca, the inferomedianum bears no secondary filter. During live observations, the stomach of Euphausia superba shows distinct pumping phases. A comparison of the structure of the stomach with data obtained from other Crustacea will lead to a better understanding about the relationships between the Malacostraca.  相似文献   

11.
The phylum Echinodermata is well known for its extensive regenerative capabilities. Although there are substantial data now available that describe the histological and cellular bases of this phenomenon, little is known about the regulatory molecules involved. Here, we use an immunochemical approach to explore the potential role played by putative members of the transforming growth factor-beta (TGF-beta) family of secreted proteins in the arm regeneration process of the crinoid Antedon mediterranea. We show that a TGF-beta-like molecule is present in normal and regenerating arms both in a propeptide form and in a mature form. During regeneration, the expression of the mature form is increased and appears to be accompanied by the appearance of an additional isoform. Immunocytochemistry indicates that TGF-beta-like molecules are normally present in the nervous tissue and are specifically localized in both neural elements and non-neural migratory cells, mainly at the level of the brachial nerve. This pattern increases during regeneration, when the blastemal cells show a particularly striking expression of this molecule. Our data indicate that a TGF-beta-like molecule (or molecules) is normally present in the adult nervous tissues of A. mediterranea and is upregulated significantly during regeneration. We suggest that it can play an important part in the regenerative process.  相似文献   

12.
Introverts of Priapulus caudatus and P. tuberculatospinosus bear 25 rows of scalids, as well as 8 spines and scattered papillae in the region the circumoral lip. These, as well as the first ring of pharyngeal teeth in P. tuberculatospinosus, are sensory organs. Although superficially they differ between species, they are all characterized by apical and/or subapical openings which are located on tiny cuticular tubules. All sensory organs contain cilia bearing bipolar receptor cells. The 8 sensory spines situated between the circumoral area and the beginning of the scalids are ultrastructurally similar to the scalids. The introvert and pharyngeal body walls, and associated muscles are described. © 1994 Wiley-Liss, Inc.  相似文献   

13.
《Journal of morphology》2017,278(1):29-49
Staurozoan cnidarians display an unusual combination of polyp and medusa characteristics and their morphology may be informative about the evolutionary origin of medusae. We studied neuromuscular morphology of two staurozoans, Haliclystus sanjuanensis ’ and Manania handi , using whole mount immunohistochemistry with antibodies against FMRFamide and α‐tubulin to label neurons and phalloidin to label muscles. All muscles appeared to lack striations. Longitudinal interradial muscles are probable homologues of stalk muscles in scyphopolyps, but in adult staurozoans they are elaborated to inwardly flex marginal lobes of the calyx during prey capture; these muscles are pennate in M. handi . Manubrial perradial muscles, like the manubrium itself, are an innovation shared with pelagic medusae and manubrial interradial muscles are shared with scyphozoan ephyra. Marginal muscles of M. handi displayed occasional synchronous contraction reminiscent of a medusa swim pulse, but contractions were not repetitive. The nerve net in both species showed regional variation in density and orientation of neurons. Some areas labeled predominantly by α‐tubulin antibodies (exumbrellar epidermis), other areas labeled exclusively by FMRFamide antibodies (dense plexus of neurites surrounding the base of secondary tentacles, neuronal concentration at the base of transformed primary tentacles; gastrodermal nerve net), but most areas showed a mix of neurons labeled by these two antibodies and frequent co‐labeling of neurons. Transformed primary tentacles had a concentration of FMRFamide‐immunoreactive neurons at their base that was associated with a pigment spot in M. handi; this is consistent with their homology with rhopalia of medusae, which are also derived from primary tentacles. The muscular system of these staurozoans embodies characteristics of both scyphopolyps and pelagic medusae. However, their nerve net is more polyp‐like, although marginal concentrations of the net associated with primary and secondary tentacles may facilitate the richer behavioral repertoire of staurozoans relative to polyps of other medusozoans. J. Morphol. 278:29–49, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

14.
15.
The presence of "maps" in sensory cortex is a hallmark of the mammalian nervous system, but the functional significance of topographic organization has been called into question by physiological studies claiming that patterns of neural behavioral activity transcend topographic boundaries. This paper discusses recent behavioral and physiological studies suggesting that, when animals or human subjects learn perceptual tasks, the neural modifications associated with the learning are distributed according to the spatial arrangement of the primary sensory cortical map. Topographical cortical representations of sensory events, therefore, appear to constitute a true structural framework for information processing and plasticity.  相似文献   

16.
The scavenging cirolanid isopod Natatolana obtusata was caught using primarily meat‐baited traps at a station in the Weddell Sea at Kap Norvegica. The hindguts of most specimens were densely stuffed with meat from the traps. The anatomy and the ultrastructure of different sections of the digestive system are described. The large and extremely expandable mouth opens into a short oesophagus which extends posteriorly into a small stomach. Lateralia and primary filter can be observed directly when the mouth opening is widened to its extreme. The anterior hindgut is extremely variable in its lumen and very distensible, depending on the nutritional condition. The cuticle of the hindgut is colonized by fungi. The length of the midgut glands varies with the nutritional conditions. Morphology and anatomy of the digestive system of Natatolana obtusata are discussed with the background of the lifestyle of the species and compared with other taxa.  相似文献   

17.
How do brain systems support our subjective experience of recollection and our senses of familiarity and novelty? A new functional imaging study concludes that each of these functions is accomplished by a distinct component of the medial temporal lobe, shedding new light on the functional organization of this memory system.  相似文献   

18.
本文采用解剖学观察、显微摄影、透射电镜等方法对麦蛾柔茧蜂Habrobracon hebetor幼虫唾液腺的显微形态、超微结构以及发育特性进行了观察和分析。麦蛾柔茧蜂幼虫唾液腺为一对无色透明至乳白色的管状腺体,自口腔沿中肠两侧向后延伸,单侧腺体在中部先分支、后合并成一不规则环状,端部呈单盲管状。唾液腺管道长度随幼虫龄期增加而呈线性增长。对唾液腺切片进行超微结构观察,发现腺管由两类差异明显的单层细胞组成,I型细胞微绒毛层较厚,胞内除有丰富的内质网和线粒体之外,还含有大量囊泡,并观察到囊泡运输分泌颗粒的现象;II型细胞微绒毛短,胞内的内质网和线粒体数量丰富。本文研究为深入探究寄生蜂幼虫的消化生理以及寄生蜂-寄主互作机制奠定了基础。  相似文献   

19.
20.
Volker Storch 《Zoomorphology》1987,106(5):301-311
Summary From the micromorphological viewpoint, the stomach is by far the most complicated part of the digestive tract of Porcellio scaber. All parts are shown in electron micrographs. The simplest inner surface of the stomach is the dorsal part, which has an unpaired flap directed posteriorly (lamella dorsalis). The lateral walls carry the lateralia, superolateralia and lamellae annulares. The most complicated region of the stomach is the ventral surface with its anterior primary filter, the adjacent masticatory areas, the posterior secondary filter on the lateral sides of the inferomedianum and the inferolateralia. Ingested food can be filtered twice: first on the primary filter and then on the secondary filter. The digestive fluid secreted in the midgut glands can be conveyed on the same route as the filtrate of the gastric juice, but in the other direction. The posterior part of the stomach is wrapped by a ring-shaped fold of the anterior hindgut, thus making seven epithelia closely apposed to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号