首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several representatives of marine brown macroalgae (Phaeophyceae) including Fucus serratus L., Fucus spiralis L. and Fucus vesiculosus L. as well as Laminaria digitata (Huds.) Lamour., Laminaria hyperborea (Gunn.) Foslie and Laminaria saccharina (L.) Lamour. were investigated with particular regard to features of biosynthesis of the storage product mannitol. The respective catalytic system involved in the last step of mannitol formation, mannitol-1-phosphate dehydrogenase, appears to be a cytoplasmic enzyme as may be judged from the degree of correlation with the chloroplast key enzyme ribulose-1,5-bisphosphate carboxylase in different tissues of Laminaria digitata and Laminaria saccharina. Activity of mannitol-1-phosphate dehydrogenase in vitro is not affected by mannitol-l-phosphate or free mannitol, suggesting that mannitol biosynthesis in vivo) is mainly controlled by the environment and/or developmental stage. Certain inorganic ions such as NO3- (including K+) exert a strong influence on the activity of mannitol1-phosphate dehydrogenase thus suggesting that the intracellular pools of stored NO3- and mannitol are confined to spatially separated cellular compartments.  相似文献   

2.
Net rates of NO3? and K+ uptake were compared for oilseed rape (Brassica napus L. cv. Jet neuf), perennial ryegrass (Lolium perenne L. cv. S23), Italian ryegrass (Lolium multiflorum Lam. cv. Augusta) and wheat (Triticum aestivum L. cv. Fen-man) in flowing solution culture during a 4-day sequence of low-low-high-high natural irradiance. Concentrations of NO3? (10 μM) and K+ (2.5 μM) in solutions were maintained automatically and hourly variation in net uptake of these ions was measured. During the 2 days of low irradiance (<1 MJ m?2 day?1) the uptake rates of both ions by all species were low at <1 mmol NO3?, m?2 h?1 and <0.4 mmol K+ m?2 h?1. Uptake increased in each species during the first day of high irradiance (7.90 MJ m?2 day?1) to >4 mmol NO3? m?2 h?1 and >1.4 mmol K+ m?1 h?1. These higher rates were maintained throughout the following night. The lag-time between maximum irradiance and the onset of the highest acceleration in uptake was greater for NO3? (5–8 h) than for K+ (≤1 h) in rape, wheat and Italian ryegrass. Uptake of NO3?, by perennial ryegrass showed an almost constant acceleration for 18 h following maximum irradiance. In all species the measured maximum inflows (uptake rate per unit root length) of both ions were greater than theoretical maximum potential inflows to a non-competing infinite-sink root in soil, by factors of 7 and 36, respectively, for NO3? and K+, averaged over all species.  相似文献   

3.
Abstract Changes in the net uptake rate of K+ and in the average tissue concentration of K+ were measured over 14 d in response to changes in root temperature with oilseed rape (Brassica napus L. cv. Bien venu) and barley (Hordeum vulgare L. cv. Atem). Plants were grown in flowing nutrient solutions containing 2.5 mmol m?3 K+ and were acclimatized over 49 d (rape) or 28 d (barley) to low root temperature (5°C) prior to steady–state treatments at root temperatures between 3 °C and 25 °C, with common air temperature. Uptake of K+ was monitored continuously over 14 d and nitrogen was supplied as NH4++ NO?3 or NH+4 or NO?3. Unit absorption rates of K+ increased with time and with root temperature up to Day 4 or 5 following the change in root temperature. Thereafter they usually approached steady-state, with Q10? 2.0 between 7 °C and 17°C, although rates became similar between 7 °C and 13°C. Uptake of K+ by rape plants was invariably greater under NO?3 nutrition compared with NH+4. The percentage K+ in the plant dry matter increased with temperature from 2% at 3 °C to 4% at 25 °C in rape, but there was less effect of temperature on the average concentrations of K+ in the plant fresh weight or plant water content. Concentrations of K+ in the leaf water fraction of rape plants decreased with increasing root temperature, but in barley they increased with increasing root temperature. Concentrations of K+ in the root water fraction were relatively stable with respect to root temperature. The results are discussed in terms of compensatory changes in K+ uptake following a change in root temperature and the relationships between growth, shoot: root ratio and K+ composition of the plant.  相似文献   

4.
Changes in the size of intracellular nitrogen pools and the potential feedback by these pools on maximum N uptake (NH4+ and NO3?) rates were determined for Chaetomorpha linum (Müller) Kützing grown sequentially under nutrient-saturating and nutrient-limiting conditions. The size of individual pools in N-sufficient algae could be ranked as residual organic N (RON) comprised mainly of amino acids and amino compounds > protein N > NO3? > NH4+ > chlorophyll N. When the external N supply was removed, growth rates remained high and individual N pools were depleted at exponential rates that reflected both dilution of existing pools by the addition of new biomass from growth and movement between the pools. Calculated fluxes between the tissue N pools showed that the protein pool increased throughout the N depletion period and thus did not serve a storage function. RON was the largest storage reserve; nitrate was the second largest, but more temporary, storage pool that was depleted within 10 days. Upon N resupply, the RON pool increased 3 × faster than either the inorganic or protein pools, suggesting that protein synthesis was the rate-limiting step in N assimilation and caused a buildup of intermediate storage compounds. Maximum uptake rates for both NH4+ and NO3? varied inversely with macroalgal N status and appeared to be controlled by changes in small intracellular N pools. Uptake of NO3? showed an initial lag phase, but the initial uptake of NH4+ was enhanced and was present only when the intracellular NH4+ pool was depleted in the absence of an external N supply. A strong negative correlation between the RON pool size and maximum assimilation uptake rates for both NH4+ and NO3? suggested a feedback control on assimilation uptake by the buildup and depletion of organic compounds. Enhanced uptake and the accumulation of N as simple organic compounds or nitrate both provide a temporary mechanism to buffer against the asynchrony of N supply and demand in C. linum.  相似文献   

5.
The influence of seawater velocity (1.5–12 cm · s?1) on inorganic nitrogen (N) uptake by the soft‐sediment perennial macroalga Adamsiella chauvinii (Harv.) L. E. Phillips et W. A. Nelson (Rhodophyta) was determined seasonally by measuring uptake rate in a laboratory flume. Regardless of N tissue content, water velocity had no influence on NO3? uptake in either winter or summer, indicating that NO3?‐uptake rate was biologically limited. However, when thalli were N limited, increasing water velocity increased NH4+ uptake, suggesting that mass‐transfer limitation of NH4+ is likely during summer for natural populations. Uptake kinetics (Vmax, Ks) were similar among three populations of A. chauvinii at sites with different mean flow speeds; however, uptake rates of NO3? and NH4+ were lower in summer (when N status was generally low) than in winter. Our results highlight how N uptake can be affected by seasonal changes in the physiology of a macroalga and that further investigation of N uptake of different macroalgae (red, brown, and green) during different seasons is important in determining the relative influence of water velocity on nutrient uptake.  相似文献   

6.
Kinetic parameters for NH4+ and NO3? uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m?3 NO3? or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g?1 root FW h?1 for NO3? and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g?1 root FW h?1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m?3), while Km values for NO3? absorption were roughly similar (around 130 mmol m?3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3?-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3? had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3? or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.  相似文献   

7.
Iodide (I?) retained by the brown macroalga Laminaria digitata at millimolar levels, possesses antioxidant activities, but the wider physiological significance of its accumulation remains poorly understood. In its natural habitat in the lower intertidal, L. digitata experiences salinity changes and osmotic homeostasis is achieved by regulating the organic osmolyte mannitol. However, I? may also holds an osmotic function. Here, impacts of hypo- and hypersaline conditions on I? release from, and accumulation by, L. digitata were assessed. Additionally, mannitol accumulation was determined at high salinities, and physiological responses to externally elevated iodine concentrations and salinities were characterised by chl a fluorometry. Net I? release rates increased with decreasing salinity. I? was accumulated at normal (35 S A) and high salinities (50 S A); this coincided with enhanced rETRmax and qP causing pronounced photoprotection capabilities via NPQ. At 50 S A elevated tissue iodine levels impeded the well-established response of mannitol accumulation and prevented photoinhibition. Contrarily, low tissue iodine levels limited photoprotection capabilities and resulted in photoinhibition at 50 S A, even though mannitol was accumulated. The results indicate a, so far, undescribed osmotic function of I? in L. digitata and, thus, multifunctional principles of this halogen in kelps. The osmotic function of mannitol may have been substituted by that of I? under hypersaline conditions, suggesting a complementary role of inorganic and organic solutes under salinity stress. This study also provides first evidence that iodine accumulation in L. digitata positively affects photo-physiology.  相似文献   

8.
NH4+ and NO3? uptake were measured by continuous sampling with an autoanalyzer. For Hypnea musciformis (Wulfen) Lamouroux, NO3?up take followed saturable kinetics (K2=4.9 μg-at N t?1, Vmax= 2.85 μg- at N, g(wet)?1. h?1. The ammonium uptake data fit a trucatd hyperbola, i.e., saturation was not reach at the concentrations used. NO3? uptake was reduced one-half in the presence of NH4+, but presence of NO3? had no effect on NH4+ uptake. Darkness reduced both NO3? and NH4+ uptake by one-third to one-half. For Macrocystis pyrufera (L) C. Agardh, NO3? uptake followed saturable kinetices: K2=13.1 μg-at N. l?1. Vmax=3.05 μg-at N. g(wet)?1. h?1.NH4+ uptake showed saturable kinetics at concentration below 22 μg-at N l -1 (K2=5.3 μg-at N.1–1, Vmax= 2.38 μg-at N G (wet)?1.h?1: at higher concentration uptake increased lincarly with concentrations. NO3?and NH4+ were taken up simulataneously: presence of one form did not affect uptake of the other.  相似文献   

9.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

10.
Daily Patterns under the Life Cycle of a Maize Crop   总被引:3,自引:0,他引:3  
Together with photosynthesis, transpiration and respiration, the daily uptake of NO3?, NH4+, H2PO4?, K+, Ca2+, Mg2+, SO42?, the root respiration, root volume increase and root excretions have been studied by daily measurements during the growth period of whole maize plants (Zea mays L. cv. INRA F7 × F2) raised until complete maturity on nutrient solution. The uptake patterns show a maximum absorption of NO3?, K+ and Ca2+ during the vegetative growth phase. The absorption of these ions declines during maturation while that of H2PO4? reaches a maximum. Root respiration and particularly the uptake of NO3? and K+ are well correlated with the rate of root growth. Root excretion is more notable in young plants than in the old. It represents less than 0.2% of the net assimilation of adult plants.  相似文献   

11.
Acid-base regulation during nitrate assimilation in Hydrodictyon africanum   总被引:8,自引:5,他引:3  
Abstract The acid-base balance during NO3? assimilation in Hydrodictyon africanum has been investigated during growth from (1) an analysis of the elemental composition of the cells, (2) the alkalinity of the ash and (3) the net H+ changes in the medium during growth. These investigations agree in showing that some 0.25 excess organic negative charges are generated per N assimilation from No3? as N-source and C02 as C-source; the excess OH? (0.75 OH? per NO3? assimilated) appears in the medium. Approximately half of the excess organic negative charge is attributable to cell wall uronates; the remainder is intracellular. All of the excess OH? appearing in the medium must have crossed the plasmalemma (as net downhill H+ influx or OH? efflux). Previous work has shown that the value of ψco is more negative than ψK+ during NO3? assimilation, suggesting that the active electrogenic H+ extrusion pump is still operative despite the net downhill H+ influx. The interpretation of this in terms of H+?NO3? symport which causes the entry of more H+ than is consumed in NO3? metabolism, with extrusion of the excess H+via the active, electrogenic H+ pump, was tested by measuring short-term H+ influx upon addition of NO?3. A net H+ influx occurs before NOa assimilation (as indicated by additional O2 evolution in the light) has commenced, suggesting a mechanistic relation of H+ and NO3? influxes. This is consistent with the interpretation suggested above. Determinations of cytoplasmic pH showed no significant effect of NO3? assimilation, suggesting that cytoplasmic pH changes sufficient to change the ‘pH-regulating’ H+ fluxes are smaller than the errors in the determination of cytoplasmic pH.  相似文献   

12.
The effect of a range of concentrations of nitrate (NO?3) on the growth rate and nitrate reductase (NR) activity of both young and mature sporophytes of Laminaria digitata (Huds.) Lamour has been studied by means of laboratory batch culture experiments. The growth rate of young sporophytes was found to increase in a hyperbolic fashion with increasing NO?3 availability, with a ks value of 19 μmol·dm?3. The potential in vivo NR activity of these plants (obtained under optimum assay conditions) remained constant over the range of NO?3 concentrations used, while the actual in vivo NR activity (sustained by the internal NO?3 pool within the cell) increased in a similar hyperbolic manner to that shown by the growth rate (ks 20 μmol·dm?3). The changes in the actual in vivo NR activity were consistent with those of the internal NO?3 content of these plants, which also increased with increasing external NO?3 concentration.The NR activity in the blade meristem of the mature sporophytes behaved in a similar manner to that of the entire young plants. In contrast, the potential in vivo NR activity of the old, non-meristematic region of the blades of mature plants (where the maximum NR activities were located) did respond to the external availability of NO?3, being greater in those plants grown in high concentrations of NO?3 than in those in which growth was nitrogen-limited. In addition to this trend, a similar dependence of the ratio of actual : potential NR activity on the degree of nitrogen limitation to that found in the young sporophytes occurred in this region of the blade of mature plants.Pronounced diurnal variations in NR activity, with maximum values in the light period and minimum in the dark, were observed in both field and laboratory populations of L. digitata. The amplitude of these fluctuations appeared to be controlled by the degree of nitrogen limitation experienced, being much greater when growth was light- rather than nitrogen-limited (minimum values 44 and 74% of maximum, respectively).Overall the data indicate that the ratio between the actual : potential in vivo NR activity in L. digitata provides an unambiguous indicator of the state of the nitrogen metabolism within the cells, the interpretation of which, unlike growth rate, is not affected by differences in other culture or environmental conditions. This finding is believed to have important implications for the commercial cultivation of this and other species of macroalgae.  相似文献   

13.
Diatoms, but not flagellates, have been shown to increase rates of nitrogen release after a shift from a low growth irradiance to a much higher experimental irradiance. We compared NO3 ? uptake kinetics, internal inorganic nitrogen storage, and the temperature dependence of the NO3 ? reduction enzymes, nitrate (NR) and nitrite reductase (NiR), in nitrogen‐replete cultures of 3 diatoms (Chaetoceros sp., Skeletonema costatum, Thalassiosira weissflogii) and 3 flagellates (Dunaliella tertiolecta, Pavlova lutheri, Prorocentrum minimum) to provide insight into the differences in nitrogen release patterns observed between these species. At NO3 ? concentrations <40 μmol‐N·L ? 1, all the diatom species and the dinoflagellate P. minimum exhibited saturating kinetics, whereas the other flagellates, D. tertiolecta and P. lutheri, did not saturate, leading to very high estimated K s values. Above ~60 μmol‐N·L ? 1, NO3 ? uptake rates of all species tested continued to increase in a linear fashion. Rates of NO3 ? uptake at 40 μmol‐N·L ? 1, normalized to cellular nitrogen, carbon, cell number, and surface area, were generally greater for diatoms than flagellates. Diatoms stored significant amounts of NO3 ? internally, whereas the flagellate species stored significant amounts of NH4 + . Half‐saturation concentrations for NR and NiR were similar between all species, but diatoms had significantly lower temperature optima for NR and NiR than did the flagellates tested in most cases. Relative to calculated biosynthetic demands, diatoms were found to have greater NO3 ? uptake and NO3 ? reduction rates than flagellates. This enhanced capacity for NO3 ? uptake and reduction along with the lower optimum temperature for enzyme activity could explain differences in nitrogen release patterns between diatoms and flagellates after an increase in irradiance.  相似文献   

14.
The stimulation of H+ extrusion by hyper-osmotic stress (0.2–0.3 M mannitol) in cultured cells of Arabidopsis thaliana (L.) Heynh. was shown to be associated with an inhibition of Cl? efflux, whereas hypo-osmotic stress, inhibiting H+ extrusion, early and strongly stimulated Cl? efflux. In this paper, we investigate the contribution of other factors [K+ transport and transmembrane electric potential difference (Em)] to the hyper-osmotic-induced activation of the plasma membrane (PM) H+-ATPase. The effects of mannitol (MA) on K+ transport and on Em were compared with those of fusicoccin (FC) since the modes of action of osmotica and of the toxin in stimulating H+-ATPase activity seem to differ at least in some steps. The changes in H+ extrusion induced by hyper- or hypo-osmotic stress were opposite and could be reversed by the application of the respective opposite stress. The effect of MA on H+ extrusion was dependent on the presence of K+ (or Rb+) similarly to that of FC, while Na+ and Li+, which also stimulated the FC effect, were ineffective on that of MA. The MA effect was independent of the anions (Cl?, SO42?, NO3?) accompanying K+. K+ net uptake and K+ influx were stimulated by both MA and FC. Tetraethylammonium (TEA+) and Cs+ inhibited both MA- and FC-induced H+ extrusion, suggesting the involvement of K+ channels. MA (0.2 M) induced a strong hyperpolarization of Em both in the absence and in the presence of K+. The hyperpolarizing effect of MA was also found when the cells were already hyperpolarized by FC, and was rapidly reversed by removing the osmoticum from the medium. In the presence of the lipophilic cation tributylbenzylammonium (TBBA+), MA was no longer able to stimulate H+ extrusion, while FC still stimulated it. In cells pretreated with TBBA+, which strongly depolarized Em, the subsequent addition of FC repolarized it, while the hyperpolarizing effect of MA was lacking. On the contrary, in cells pretreated with Erythrosine B (EB), Em was strongly depolarized and the following addition of FC did not hyperpolarize it, while the hyperpolarizing effect of MA was still observed. These results suggest that the mechanism of MA in activating H+ extrusion and K+ uptake is different from that of FC. The rise in net K+ uptake seems to be driven by the activation of some hyperpolarizing system that does not seem to depend on a direct activation of PM H+-ATPase, but rather on the inhibition of Cl? efflux induced by hyper-osmotic stress.  相似文献   

15.
The effect of application of different potassium rates on some parameters of nitrate metabolism and yield in cucumber plants (Cucumis sativus) was studied. All plants were grown under controlled conditions in an experimental greenhouse. The treatments consisted of applications of K+ at three rates in the form of K2SO4 (Kl: 0.075 mg ml?1, K2: 0.15 mg ml?1, and K3: 0.30 mg ml?1). The results showed a positive effect of higher K+ fertilisation (0.30 mg ml?1) on uptake, translocation and reduction of NO3? in leaves compared with the lowest K+ rate. In addition, the higher K+ rates strengthened the translocation of organic nitrogenous compounds (amino acids) towards the fruit, thereby perhaps also enhancing the maximal commercial yield. In conclusion, for improved cucumber cultivation under greenhouse conditions, 0.15 mg ml?1 of K+ gave maximal yield, while the application of 0.30 mg ml?1 increased the metabolism and efficient utilisation of NO3?.  相似文献   

16.
Root NO3 ? and NH4 + influx systems of two early‐successional species of temperate (trembling aspen: Populus tremuloides Michx.) and boreal (lodgepole pine: Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forest ecosystems were characterized. NO3 ? and NH4 + influxes were biphasic, consisting of saturable high‐affinity (HATS) and constitutive non‐saturable low‐affinity transport systems (LATS) that were evident at low and relatively high N concentrations, respectively. NO3 ? influx via HATS was inducible (IHATS); nitrate pre‐treatment resulted in 8–10‐fold increases in the Vmax for influx in both species. By contrast, HATS for NH4 + were entirely constitutive. In both species, Vmax values for NH4 + influx were higher than those for NO3 ? uptake; the differences were larger in pine (6‐fold) than aspen (1·8‐fold). In aspen, the Km for NH4 + influx by HATS was approximately 3‐fold higher than for IHATS NO3 ? influx, while in pine the Km for IHATS NO3 ? influx was approximately 3‐fold higher than for NH4 + influx. The aspen IHATS for NO3 ? influx appeared to be more efficient than that of pine (Vmax values for aspen being approximately 10‐fold higher and Km values being approximately 13‐fold lower than for pine). By contrast, only small differences in values for the NH4 + HATS were evident between the two species. The kinetic parameters observed here probably result from adaptations to the N availabilities in their respective natural habitats; these may contribute to the distribution and niche separation of these species.  相似文献   

17.
A planktonic alga similar in general morphology and pigments to Aureococcus anophagefferens Hargraves and Sieburth has caused persistent and ecologically damaging blooms along the south Texas coast. Experiments using 100 μM NO3?, NO2?, and NH4+ demonstrated that the alga could not use NO3? for growth but could use NO2? and NH4+. Doubling iron or trace metal concentrations did not permit growth on NO3?. Chemical composition data for cultures grown in excess NO3? or NH4+, respectively, were as follows: N·cell?1 (0.88 vs. 1.3 pg), C:N ratio (25:1 vs. 6.4:1), C:chlorophyll a (chl a) (560:1 vs. 44:1), and chl a·cell?1 (0.033 vs. 0.16 pg). These data imply that cells supplied with NO3? were N-starved. Culture addition of 10 mM final concentration chlorate (a nitrate analog) did not affect the Texas isolate while NO3? utilizing A. anophagefferens was lysed, suggesting that the NO3? reductase of the Texas isolate is nonfunctional. Rates of primary productivity determined during a dense bloom indicated that light-saturated growth rates were ca. 0.45 d?1, which is similar to maximum rates determined in laboratory experiments (0.58 d?1± 0.16). However, chemical composition data were consistent with the growth rate of these cells being limited by N availability (C:N 28, C:chl a 176, chl a·cell?1 0.019). Calculations based on a mass balance for nitrogen suggest that the bloom was triggered by an input of ca. 69 μM NH4+ that resulted from an extensive die-off of benthos and fish.  相似文献   

18.
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.  相似文献   

19.
20.
Greenhouse-grown cut flower roses are often irrigated with moderately saline irrigation water. The salt/ballast ions are either present initially in poor quality raw water or reclaimed municipal water, or accumulated in greenhouse irrigation water that is captured and reused. Such ions can inhibit root absorption of essential nutrients. The objective of this work was to quantify the influence of NaCl concentration on the uptake of nitrate and potassium by roses and develop a predictive model of uptake inhibition based on NaCl, NO3 ?, and K+ concentration. One year-old rose plants (Rosa spp. ‘Kardinal’ on ‘Natal Briar’ rootstock) were moved into growth chambers where nitrogen and potassium depletion were monitored during 6 days. Eight different initial NaCl treatments varying from zero to 65 mol m?3 were used and within these there were two initial NO3 ? and K+ concentrations: high concentration (HC, 7.0 mol m?3 and 2.6 mol m?3 NO3 ? and K+ respectively) or low concentration (LC, 3.5 mol m?3 and 1.3 mol m?3 NO3 ? and K+ respectively). Plant NO3 ? uptake was negatively affected by NaCl concentration. NO3 ? maximum influx (Imax) declined from 5.1 µmol to 2.5 µmol per gram of plant dry weight per hour as NaCl concentration increased from zero to 65 mol m?3. A modified Michaelis–Menten (M–M) equation taking into account inhibition by NaCl provided the best fit for NO3 ? uptake in response to varying NaCl concentration. K+ uptake was unaffected by NaCl concentration. A M–M equation that did not include inhibition was suitable for describing K+ uptake at varying NaCl concentration. The resulting empirical models could assist with decision making, such as: adjustment of NO3 ? fertilization based on NaCl concentration, necessity of water desalinization, or determination of the desired leaching fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号