首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of bilirubin by the alpha-helix conformation of poly(L-lysine) in water induces optical activity. The bisignate circular dichroism spectrum exhibits exciton bands centred at 444 nm, negative, and at 525 nm, positive. The magnitude of the induced circular dichroism depends on the concentration of total bilirubin and total lysine residues, the molar ratio of total lysine residues-to-total bilirubin molecules, the pH and the degree of polymerization of poly(L-lysine). Although bilirubin binds to the random coil conformation of poly(L-lysine), as evidence by the absorption spectrum, the complex is optically inactive. The results suggest that bilirubin binds to the poly(L-lysine) in the form of dimers and oligomers.  相似文献   

2.
Two sequential polypeptides, poly(O-benzyl-L -Tyr-γ-benzyl-L -Glu-L -Ala-Gly) and poly(ε-benzyloxycarbonyl-L -Lys-L -Glu-L -Ala), were synthesized, the former by the pentachlorophenyl ester of the tetrapeptide monomer and the latter by the azide of the tripeptide monomer. After deprotection and dialysis, poly(L -Tyr-L -Glu-L -Ala-Gly) was obtained in 71% yield and had a molecular weight of 53,000. The circular dichroism spectra (CD) of the polymer at pH's 7.2, 10.5, and 11.8 and of oligomers and of the monomer at pH 7.2 indicated that the polymer exists in an α-helical conformation. After deprotection, poly(L -Lys-L -Glu-L -Ala) was obtained in 37% yield and had a molecular weight of 3000. The CD spectra of the polymer at pH 7.2 and 2.8, and of the monomer at pH 7.2, indicated that the polymer is in a randomly coiled configuration.  相似文献   

3.
The absorption spectra and circular dichroism (CD) have been measured for aqueous solutions of acridine orange of a constant concentration, [D] = 5 × 10?5M, mixed with poly(S-carboxyethyl-L -cysteine) in various mixing ratios, [P]/[D], ranging from 330 to 11, at different pH. The absorption spectra of the dye–polymer solutions are hypochromic, and the main band is located at 470 nm, accompanying a shoulder at 500 nm. At alkaline pH, no CD is induced in the visible region. At neutral and acidic pH, where the polymer is in the β-conformation, CD is induced in the visible and near-uv regions. A pair of CD bands is located at the region around 450 nm, when the pH is around the neutrality, while it appears at the region around 500 nm at acidic pH. Thus, the optically active species of bound dye changes from dimer to monomer on lowering the pH. These species form dissymmetric arrays along a polypeptide chain. The fraction of bound dye forming dissymmetric sequences is not high, but most of bound dye is adsorbed randomly on the ionized carboxyl groups of polypeptide chain and gives rise to hypochromism only. A dissymmetric structure of dye–polymer complexes is presented, in which the polymer has the β-conformation and the dye cations, either dimeric or monomeric, bind to its side chains, in such a way that the longer axes of molecular planes of bound dye form a two-fold, right-handed helix along the extended polypeptide chain. A zeroth-order calculation of CD based on the coupled oscillator model leads to the result that each dissymmetric array of dye consists, on the average, of two dimeric or monomeric cations. This low number of bound cations in a dissymmetric array and the large fraction of randomly adsorbed dye suggest that the hydrophobic interaction of dye with the polymer is strong, so that dye cations are adsorbed sparsely on both sides of the extended polypeptide chain.  相似文献   

4.
T Imae  S Ikeda 《Biopolymers》1975,14(6):1213-1221
Circular dichroism and absorption spectra are measured on mixed solutions of acridine orange and poly(S-carboxymethyl-L -cysteine) at different pH and P/D mixing ratios. The observed circular dichroism spectra are classified into several types, mainly based on the number and sign of circular dichroic bands in the visible region. Three of them are associated with the absorption spectra characteristic of dimeric dye or higher aggregates of dye. Type I is observed with solutions, of which the pH is acid and P/D is higher than 4, and it has an unsymmetrical pair of positive and negative dichroic bands at 470 and 430 nm. This type is induced on the dye bound to the polymer in the β-conformation. Types II and III are considered to be characteristic of randomly coiled polymers. Type II is exhibited by solutions of P/D higher than 1 at pH 5–7 and has two dichroic bands around the same wavelengths as Type I but with opposite signs and an additional positive band at 560 nm. Type III, shown by solutions of P/D 2–0.6 at pH 6–10.5, has three dichroic bands around the same wavelengths as Type II but with signs opposite to it. The other two types of circular dichroism, induced for the solutions of P/D less than 1 at slightly acid pH, are associated with the absorption spectra of monomeric dye and are observed with disordered or randomly coiled polymer. They have a pair of dichroic bands at 540 and 425 nm, and the signs of these bands are opposite to each other in these two types.  相似文献   

5.
6.
G. R. Seely  R. L. Hart 《Biopolymers》1979,18(11):2745-2768
The addition of methylene blue to certain samples of Na alginate produces a complex succession of spectrally distinguishable aggregated (metachromatic) dye species. Three of these species are active in CD; they are interpreted as aggregates of dye, but probably dimers, bound in orientations characteristic of the constituent copolymer blocks of alginate to which they are tentatively assigned. The aggregates compete with divalent metal ions and hydrogen ion for the binding sites of the polymer. Other samples of alginate give a modified succession of aggregated spectral species, which are almost devoid of CD activity. Mild treatment with acid, insufficient for hydrolysis, converts forms of alginate with CD activity into modified forms without it, the absorption spectra of which resemble those of samples originally devoid of activity. It is implied, subject to confirmation, that the chiral properties of the binding sites of the native polysaccharide are diminished or lost by acid treatment during commercial preparation.  相似文献   

7.
Hiroshi Maeda  Kenta Ooi 《Biopolymers》1981,20(7):1549-1563
The β-coil transition of poly(S-carboxymethyl-L -cysteine) (poly[Cys(CH2CO2H)]) and poly(S-carboxyethyl-L -cysteine) (poly[Cys((CH2)2CO2H)]) was followed by CD, potentiometric titration, and viscosity in the absence of added salt. These different properties give consistent results for poly[Cys((CH2)2CO2H)]. The CD spectra of poly[Cys(CH2CO2H)] change considerably with the degree of neutralization α even for a low-molecular-weight sample incapable of forming the β-structure. Because of the superposition of this additional effect, the dependence of CD on α is inconsistent with titration data for the case of poly[Cys(CH2CO2H)], particularly when the nπ transition is used to follow the β-coil transition. The change of CD inherent to the β-coil transition is characterized by an isodichroic point: 215 nm for poly[Cys((CH2)2CO2H)] and 218 nm for poly[Cys(CH2CO2H)]. A criterion supporting the stacking of the pleated sheet is suggested based on the isodichroic point.  相似文献   

8.
9.
The circular dichroism spectrum of resting mushroom tyrosinase between 800 and 400 nm showed two bands at 755, and 653 nm. The CD spectrum of resting tyrosinase between 400 and 250 nm showed oxygen-sensitive changes at 350 nm upon treatment of tyrosinase with hydroxylamine or hydrogen peroxide. These were similar to changes observed on regeneration of aged hemocyanin by similar procedures. A structural relationship between the active sites of hydroxylamine- or hydrogen peroxide-treated tyrosinase and hemocyanin is suggested by these observations, confirming inferences based upon other studies (Jolly, Jr., R.L., Evans, L.H., Makino, N. and Mason, H.S. (1974) J. Biol. Chem. 249, 335-345 and Schoot Uiterkamp, A.J.M. and Mason, H.S. (1973) Proc. Natl. Acad, Sci. U.S. 70, 993-996).  相似文献   

10.
R M Glaeser  B K Jap 《Biochemistry》1985,24(23):6398-6401
The inhomogeneous distribution of chromophore occurring in a particulate suspension can result in a reduction in the apparent molar ellipticity recorded in circular dichroism (CD) spectra. The possibility of such a systematic error has often been a matter of concern when CD spectra of cell membrane proteins are recorded. The recent publication of CD spectra for bacteriorhodopsin in native and sonicated membranes, in detergent-solubilized form, and reconstituted into small unilamellar vesicles [Mao, D., & Wallace, B. A. (1984) Biochemistry 23, 2667-2673] gives a unique opportunity to apply the theoretical analysis of Gordon and Holzwarth [Gordon, D. J., & Holzwarth, G. (1971) Arch. Biochem. Biophys. 142, 481-488] so as to provide a definitive answer to the question of whether absorption flattening is significant for membrane particles. We show here that the data of Mao and Wallace can be combined with the theoretical analysis of Gordon and Holzwarth to rule out significant absorption flattening effects over the range 200-240 nm for submicrometer-sized membranes. In addition, the results show that absorption flattening can be disregarded even at 190 nm for membranous material in the size range below 100 nm. The demonstration that there are no major flattening effects in the CD spectra of bacteriorhodopsin, particularly in the region of 200-240 nm, means that the experimental spectra are incompatible with the proposal that this transmembrane protein contains seven transmembrane helices.  相似文献   

11.
The vacuum-ultraviolet circular dichroism (VUCD) of chondroitin and chontroitin-6-sulfate has been measured to 160 nm for films and to 170 nm for D2O solutions. The pD-dependent dichroic behavior of these glycosaminoglycans in D2O is similar above 200 nm and is in agreement with previous studies. Near 190 nm, the CD band sign is also dependent on pD. VUCD spectra were recorded for films and solutions of poly(L -arginine). In trifluoroethanol the polypeptide is α-helical, while in D2O it exists as a random coil. The well-characterized coil–helix transition of poly(L -arginine) during complexation with chondroitin-6-sulfate was observed by VUCD, including the previously inaccessible entire π → π* band. By construction of difference spectra it was also possible to monitor the VUCD of the polysaccharide component during complexation.  相似文献   

12.
13.
Yukio Sato  Robert W. Woody 《Biopolymers》1980,19(11):2021-2031
Complex formation of 1-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinonaphthalene-6-sulfonate (TNS) with the β-form of poly(L -lysine) [(β-Lys)n] has been studied by circular dichroism (CD) and absorption spectra measurements. Not only hydrophobic interactions but also hydrogen-bonding and electrostatic interactions contribute to complex formation. The relative importance of these stabilizing factors depends on the relative position of the arylamino group and the sulfonate. For example, ionic interactions play a significant role in the binding of 1,8-ANS and 1,8-TNS, but not in the case of 2,6-TNS. The induced CD of the complexes of (β-Lys)n with 1,8-ANS and 1,8-TNS is consistent with theoretical calculations for nonplanar conformations of these dyes, twisted in a left-handed sense. As expected for steric reasons, the dominant isomer is one in which the arylamino group is oriented away from the 8-sulfonate (α1). The induced CD of complexes with 2,6-TNS can be accounted for by an equimolar mixture of left-handed isomers in which the arylamino group is oriented toward the 1-position (β2) and toward the 3-position (β1). Our results demonstrate that (β-Lys)n is capable of chiral discrimination and suggest its general utility for CD studies of racemic anionic dyes.  相似文献   

14.
15.
16.
Fourier transform ir vibrational circular dichroism (VCD) spectra in the amide I′ region of poly(L-lysine) in D2O solutions have confirmed the existence of three distinct conformational states and an unordered conformational state in this homopolypeptide. Characteristic VCD spectra are presented for the right-handed α-helix, the antiparallel β-sheet, an extended helix conformation previously referred to as the so-called “random coil,” and a completely unordered conformation characterized by the absence of any amide I′ VCD. VCD for the antiparallel β-sheet in solution and the unordered chain conformation are presented for the first time. Each of the four different VCD spectra is unique in appearance and lends weight to the view that VCD has the potential to become a sensitive new probe of the secondary structure of proteins in solution.  相似文献   

17.
To extend the model that explains why and how much absorption flattening (AF) influences circular dichroism (CD) signals, we have investigated the interesting case of exciton CD in the Soret region of a noncovalent complex formed by (Delta-RuPhen(3))(2+) and the tetraanionic porphyrin H(2)TPPS. Different concentrations have been studied by using an AF emulator and spectra simulation. The CD spectra of this compound occasionally show distortions in the solution sampling mode with the increase of concentration; the inhomogeneous distribution in the cell volume is due to aggregation and is the source of the AF effect. On the basis of these results, we conclude that AF is an important cause of distortions in CD spectra for Delta-RuPhen(3) . H(2)TPPS complexes and might affect the CD bands of other aggregated systems as well.  相似文献   

18.
Absorption, circular dichroism (CD), magnetic circular dichroism (MCD) and emission spectra of rat liver and rat kidney cadmium-, zinc- and copper-containing metallothioneins (MT) are reported. The absorption, CD and MCD data of native rat kidney Cd,Cu-MT protein closely resemble data recorded for the rat liver Cd,Zn-MT. This suggests that the major features in all three spectra of the native Cd,Cu-MT are dominated by cadmium-related bands. The CD spectrum of the Cd,Cu-MT recorded at pH 2.7 has the same band envelope that is observed for a Cd,Cu-MT formed in vitro by titration of Cd,Zn-MT with Cu(I), suggesting that the copper occupies the zinc sites in Cd,Cu-MT formed both in vivo and, at low molar ratios, in vitro. Remetallalion of the metallothionein from low pH in the presence of both copper and cadmium results in considerably less cadmium bound to the protein than was present in the native sample. It is suggested that this is due to the effect of the distribution of the copper amongst all available binding sites, thus inhibiting cluster formation by the cadmium. Emission spectra are reported for the first time for a cadmium- and copper-containing metallothionein. An emission band at 610 nm is shown to be a sensitive indicator of Cu(I) binding to metallothionein. Both the native Cd,Cu-MT and a Cd,Cu-MT formed in vitro exhibit an excitation spectrum with a band in the copper-thiolate charge-transfer region.  相似文献   

19.
A Perczel  K Park  G D Fasman 《Proteins》1992,13(1):57-69
A recently developed algorithm, called Convex Constraint Analysis (CCA), was successfully applied to determine the circular dichroism (CD) spectra of the pure beta-pleated sheet in globular proteins. On the basis of X-ray diffraction determined secondary structures, the original data set used (Perczel, A., Hollosi, M., Tusnady, G. Fasman, G.D. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Prot. Eng., 4:669-679, 1991), was improved by the addition of proteins with high beta-pleated sheet content. The analysis yielded CD curves of the pure components of the main secondary structural elements (alpha-helix, antiparallel beta-pleated sheet, beta-turns, and unordered conformation), as well as a curve attributed to the "aromatic contribution" in the wavelength range of 195-240 nm. Upon deconvolution the curves obtained were assigned to various secondary structures. The calculated weights (percentages determining the contributions of each pure component curve in the measured CD spectra of a given protein) were correlated with the X-ray diffraction determined percentages in an assignment procedure and were evaluated. The Pearson product correlation coefficients (R) are significant for all five components. The new pure component curves, which were obtained through deconvolution of the protein CD spectra alone, are promising candidates for determining the percentages of the secondary structural components in globular proteins without the necessity of adopting an X-ray database. The CD spectrum of the CheY protein was interesting because it has the characteristic shape associated with the alpha-helical structure, but upon analysis yielded a considerable amount of beta-sheet in agreement with the X-ray structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号