首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plankton community structure and major pools and fluxes of carbon were observed before and after culmination of a bloom of cyanobacteria in eutrophic Frederiksborg Slotssø, Denmark. Biomass changes of heterotrophic nanoflagellates, ciliates, microzooplankton (50 to 140 μm), and macrozooplankton (larger than 140 μm) were compared to phytoplankton and bacterial production as well as micro- and macrozooplankton ingestion rates of phytoplankton and bacteria. The carbon budget was used as a means to examine causal relationships in the plankton community. Phytoplankton biomass decreased and algae smaller than 20 μm replacedAphanizomenon after the culmination of cyanobacteria. Bacterial net production peaked shortly after the culmination of the bloom (510 μg C liter?1 d?1 and decreased thereafter to a level of approximately 124 μg C liter?1 d?1. Phytoplankton extracellular release of organic carbon accounted for only 4–9% of bacterial carbon demand. Cyclopoid copepods and small-sized cladocerans started to grow after the culmination, but food limitation probably controlled the biomass after the collapse of the bloom. Grazing of micro- and macrozooplankton were estimated from in situ experiments using labeled bacteria and algae. Macrozooplankton grazed 22% of bacterial net production during the bloom and 86% after the bloom, while microzooplankton (nauplii, rotifers and ciliates larger than 50 μm) ingested low amounts of bacteria and removed 10–16% of bacterial carbon. Both macro-and microzooplankton grazed algae smaller than 20 μm, although they did not control algal biomass. From calculated clearance rates it was found that heterotrophic nanoflagellates (40–440 ml?1) grazed 3–4% of the bacterial production, while ciliates smaller than 50 μm removed 19–39% of bacterial production, supporting the idea that ciliates are an important link between bacteria and higher trophic levels. During and after the bloom ofAphanizomenon, major fluxes of carbon between bacteria, ciliates and crustaceans were observed, and heterotrophic nanoflagellates played a minor role in the pelagic food web.  相似文献   

2.
Seasonal changes in the species composition, abundance and biomass of planktonic ciliates were determined every 2–3 weeks at two sites of 30 m depth and one location of 105 m depth in the southwestern Gdańsk Basin between January 1987 and January 1988. A total of 40 ciliate taxa were observed during this period. Autotrophic Mesodinium rubrum dominated ciliate abundance and biomass: maximal values of 50 · 10−1 ind. 1-1 and 65 μg C 1−1 were recorded. The annual mean biomass of M. rubrum comprised 6 to 9% of the annual mean phytoplankton biomass. The highest abundances and biomasses of heterotrophic ciliates were noted at all stations in the spring and summer in the euphotic zone with maximum values of 28 · 103 ind. 1−1 and 23 μg C 1−1. Three ciliates assemblages were distinguished in the epipelagic layer: large and medium-size non-predatory ciliates, achieving peak abundance in spring and autumn; small-size microphagous ciliates and epibiotic ciliates which were abundant in summer, and large-size predacious ciliates dominating in spring. Below 60 m, a separate deep-water ciliate community composed of Prorodon-like ciliates and Metacystis spp. was found. The ciliate biomass in the 60–105 m layer was similar to the ciliate biomass in the euphotic zone. The heterotrophic ciliate community contributed 10 to 13% to the annual mean zooplankton biomass. The potential annual production of M. rubrum comprised 6 to 9% of the total primary production. Carbon demand of non-predatory ciliates, calculated on the basis of their potential production, was estimated to be equivalent to 12–15% of the gross primary production.  相似文献   

3.
We determined biomass and activity of microbial plankton across the Polar Front (PF) in Drake Passage during January 1994. Temperature was around 0°C south and between 3 and 5°C north of the PF. Both biomass and activities of microorganisms were significantly lower in the Antarctic waters south of the PF than in the sub-Antarctic waters north of it. Thus, values of chlorophyll a, integrated between 0 and 200 m, reached 150 mgm−2 north, but only 25 mg m−2 south of the PF. Likewise, bacteria varied between 1014 and 4×1013 cells m−2. However, the abundance of heterotrophic nanoflagellates was extremely low throughout Drake Passage (around 3×1010 cells m−2). Bacterial doubling times were long (mean of 25 days). Bacterivory was estimated from the abundance of predators and prey and from temperature. The grazing impact on bacterioplankton biomass was insignificant (less that 0.05% per day) and low on bacterial heterotrophic production (15% per day). Neither biomass nor the activities of microorganisms were found to increase at the PF. The microbial food web was uncoupled and the bacteria did not seem to be controlled by predation.  相似文献   

4.
Nianzhi Jiao  I-Hsun Ni 《Hydrobiologia》1997,352(1-3):219-230
Geographic and vertical variations of size-fractionated (0.2–1μm, 1–10 μm, and >10 μm) Chlorophyll a (Chl.a) concentration, cyanobacteria abundance and heterotrophic bacteria abundance were investigated at 13 stations from 4°S, 160°W to 30°N, 140°E in November 1993. The results indicated a geographic distribution pattern of these parameters with instances of high values occurring in the equatorial region and offshore areas, and with instance of low values occurring in the oligotrophic regions where nutrients were almost undetectable. Cyanobacteria showed the highest geographic variation(ranging from 27×103 to 16,582×103cell l-1), followed by Chl.a (ranging from 0.048 to 0.178μg l-1), and heterotrophic bacteria (ranging from2.84×103 to 6.50 ×105 cell l-1). Positive correlations were observed between nutrients and Chl.a abundance. Correspondences of cyanobacteria and heterotrophic bacteria abundances to nutrients were less significant than that of Chl.a. The total Chl.a was accounted for 1.0–30.9%, 35.9–53.7%, and 28.1–57.3% by the >10μm, 1–10 μm and 0.2–1 μm fractions respectively. Correlation between size-fractionated Chl.a and nutrients suggest that the larger the cell size, the more nutrient-dependent growth and production of the organism. The ratio of pheophytin to chlorophyll implys that more than half of the >10 μm and about one third of the 1–10 μm pigment-containing particles in the oligotrophic region were non-living fragments, while most of the 1–10 μm fraction was living cells. In the depth profiles, cyanobacteria were distributed mainly in the surface layer, whereas heterotrophic bacteria were abundant from surface to below the euphotic zone. Chl.a peaked at the surface layer (0–20 m) in the equatorial area and at the nitracline (75–100 m) in the oligotrophic regions. Cyanobacteria were not the principle component of the picoplankton. The carbon biomass ratio of heterotroph to phytoplankton was greater than 1 in the eutrophic area and lower than 1 in oligotrophic waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Chroococcoid cyanobacteria, (mean size = 0.79 μm, likely Synchetocystis limnetica Popovsk) and total eubacteria (mean size = 0.33 μm), from Lake Baikal, USSR, were enumerated using epifluorescence microscopy and sized with image analysis. Bacterial densities ranged from 0.44 · 106 cells ml−1 at 250 m to 2.3 · 106 cells ml−1 at the surface. Mean eubacterial abundance was 1.3 · 106 cells ml−1. Cyanobacterial densities were more variable, ranging from 0.42 · 104 cells ml−1 at 250 m to 9.8 · 104 cells ml−1 at the surface, with a mean abundance of 2.7 · 104 cells ml−1. The cyanobacteria, in particular, occurred in clusters resembling “marine snow”. Our results indicate that Lake Baikal picoplankton size and density are similar to other large lakes but may have a more diverse community structure than in other large oligotrophic lakes.  相似文献   

6.
The seasonal development of autotrophic picoplankton was investigated in seven Danish lakes representing a eutrophication gradient. Highest cell abundance between 1.5 to 6 × 105 cells ml−1 were found in mid-summer. Minor peaks were observed in spring. In winter, densities were below 103 ml−1. The highest relative picoplankton contribution to total autotrophic biomass also occurred in mid-summer. In the eutrophic lakes and one humic lake the average seasonal contribution of picoplankton to total chlorophyll was below 1% increasing to 5-8% in the meso- and oligotrophic clear water lakes. During short periods the proportion of picoplankton did reach 25%. The higher relative importance of picoplankton in less productive lakes was not due to higher actual chlorophyll concentrations, but due to a much more pronounced response by larger algae at higher nutrient loading. Both cyanobacteria and eukaryote organisms were present as picoplankton. Only eukaryotes were found in one eutrophic lake and an acidic, humic lake. In the eutrophic lakes eukaryote picoplankton was dominant; both with respect to cell densities and biovolume, whereas cyanobacteria dominated the two meso-oligotrophic lakes. Autotrophic picoplankton were present in all lake types, however their importance seemed to be less in most eutrophic lakes than in less productive, meso-oligotrophic lakes.  相似文献   

7.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

8.
Phytoflagellates < 10 μm substantially contribute to the abundance, biomass and primary production in polar waters, but information on the distribution of specific groups is scarce. We applied catalysed reporter deposition‐fluorescence in situ hybridization to investigate the distribution of total phytoflagellates and of eight specific groups along a 100 km transect west off Kongsfjorden (Spitsbergen) from 29 to 31 July 2010. Phytoflagellates contributed to > 75% of the depth‐integrated abundance and biomass of total eukaryotes < 10 μm at all stations. Their depth‐integrated abundance and biomass decreased along the transect from 1.5 × 1012 cells m?2 (6.6 × 1012 pgC m?2) at the outermost station to 1.7 × 1010 cells m?2 (4.7 × 1010 pgC m?2) at the innermost station. Chlorophytes contributed to the total abundance of phytoflagellates with a range from 13% to 87% (0.7–30.5 × 103 cells ml?1), and predominated in open waters. The contribution of haptophytes was < 1–38% (10–4500 cells ml?1). The other groups represented < 10%. The temperature and salinity positively correlated with the total abundance of phytoflagellates, chlorophytes, haptophytes, bolidophytes and pelagophytes. Cryptophytes, pedinellids and pavlovophytes were negatively associated with the nutrient concentrations. The community composition of phytoflagellates changed along the transect, which could have implications on food web dynamics and biogeochemical cycles between the open ocean environment and Kongsfjorden investigated here.  相似文献   

9.
To examine the extent of the microbial food web in suboxic waters of a shallow subtropical coastal lagoon, the density and biomass of bacteria and protozooplankton were quantified under different dissolved oxygen (DO) levels. In addition, bottom waters of a stratified site were compared with bottom waters of a homogeneous site under periods of high and low biological oxygen production/consumption in the lagoon. At the stratified site, microbial biomass decreased with oxygen decline, from oxia to suboxia, with a recovery of the initial total biomass after a 20-day period of persistent suboxia. A peak in density and biomass of purple sulfur bacteria (PSB) (90 μg C L(-1)) occurred in the suboxic waters 20 days prior to the peak in biomass of ciliates >50 μm (Loxophyllum sp. of 150 μm) (160 μg C L(-1)), demonstrating a top down biomass control. Ciliates >50 μm were positively correlated with PSB and bacteriochlorophyll a (photosynthetic pigment of PSB). Total protozoan biomass reached 430 μg C L(-1) in the suboxic waters of the stratified site, with ciliates >50 μm accounting for 90% of the total ciliate biomass and of 55 % of biomass of protozoa. At the homogeneous site, total protozoan biomass was only 66 μg C L(-1), where flagellates and ciliates <25 μm were the dominant microorganisms. Therefore, as light is available for primary producers in the bottom waters of shallow stratified coastal lagoons or estuaries, one can expect that high primary production of PSB may favor a specialized microbial food web composed by larger microorganisms, accessible to zooplankton that tolerate low DO levels.  相似文献   

10.
The abundance, biomass, and composition of phototrophic picoeukaryotes (PPE, cell size less than 3 μm) were studied in Onega Bay of the White Sea in June 2015. The highest PPE abundance and biomass were registered in the 0–5-m water layer. In the bay, in the 0–5-m water layer, the average abundance and biomass varied from 0 to 36.8 × 104 cell/L and from 0 to 117 μg С/m3, respectively. The Illumina sequencing of V4 region of 18S rRNA gene revealed eight classes of PPE. Mamiellophyceae dominated both by number of reads and by operational taxonomic units. The green algae Bathycoccus prasinos, Ostreococcus tauri, and Micromonas pusila, as well as diatoms Skeletonema marinoi and Minidiscus trioculatus, were identified to the species level.  相似文献   

11.
Cremona  Fabien  Blank  Kätlin  Haberman  Juta 《Hydrobiologia》2021,848(18):4401-4418

We assessed long-term impacts of multiple stressors and their interaction on the zooplankton community of the large, eutrophic, cyanobacteria-dominated Lake Peipsi (Estonia, Russia). Stressor dataset consisted in time series (1997–2018) of temperature, nutrients, pH, water transparency, phytoplankton biomass and taxonomic richness. The best predictors were selected with random forests machine-learning algorithms and the subsequent models were constructed with generalized linear modeling. We also aimed to identify graphical thresholds representing non-linear, marked responses of abundance or biomass to stressors. Temperature was the dominant stressor for explaining zooplankton abundance and biomass, followed by cyanobacteria biomass, total nitrogen concentration and water transparency. The effect of water temperature was positive, whereas the effect of cyanobacteria became negative after their biomass exceeded a threshold of?~?2 mg l?1. However, the two stressors together had antagonistic effects on zooplankton, causing a decrease in biomass and abundance. For zooplankton, critical thresholds of total nitrogen (~?700 μg l?1), total phosphorus (~?70 μg l?1), and water transparency (~?1.4 m) after which zooplankton metrics changed drastically, were determined. These findings show that although lake warming alone could be positive for zooplankton, the necessity of reducing interacting stressors that influence harmful cyanobacteria growth and biomass, especially nitrogen loads, must be considered.

  相似文献   

12.
In July-August 2009, the abundance of picophytoplankton (Pico) in the Velikaya Salma strait varied from 3.4 × 106 to 19.4 × 106 cells/L, while its biomass (B) was 0.8–3.3 mg C/m3. In August 2010, Pico abundance was significantly higher (up to 216 × 106 cells/L and 36.8 mg C/m3). Pico consisted mainly of cyanobacteria. It constituted 13 (2009) to 28% (2010) of the total phytoplankton biomass. In April 2010, Pico numbers varied from 0.1 × 106 to 0.22 × 106 cells/L and its biomass was 0.05–0.28 mg C/m3. Picoeukaryotes were predominant. Pico constituted not more than 2.7% of the phytoplankton biomass. In the ice column, the integrated Pico abundance was 430 × 106 cells/m2 and the integrated biomass was 365 μg C/m2.  相似文献   

13.
1. Temporal and spatial variation in planktonic abundance, biomass and composition were determined in Lake Hoare (McMurdo Dry Valleys, Antarctica) over two summer seasons (1996–97 and 1997–98). 2. Phototrophic nanoflagellates (PNAN) dominated planktonic biomass, with a mean monthly biomass ranging between 27.3 and 40.4 μg C L?1. The deep chlorophyll maximum was mainly composed of cryptophytes (>87% of total PNAN biomass) and varied in depth between 6 and 12 m. 3. Maximum bacterial concentration was 11.8 × 105 cells mL?1. Bacterial abundance showed relatively little temporal variation, with the exception of a drop in numbers that occurred in late November of both years studied. 4. Ciliates were the most successful heterotrophic protozoan group, with a mean monthly biomass (1.2–3.2 μg C L?1) being typically at least double that of heterotrophic nanoflagellate (HNAN) biomass (0.1–0.7 μg C L?1). 5. Microbial processes within this lake appear to be dominated by bottom up control. The relative importance of allochthonous inputs into the lake (from the ice‐cover and stream flow) and autochthonous recycling (by microzooplankton regeneration) are considered. 6. Results from a horizontal transect indicate that the permanence of the main sample hole may have enhanced planktonic biomass over a relatively small spatial scale.  相似文献   

14.
Abstract Changes in the abundance and biomass of aquatic and terrestrial aerial insects with distance (mid‐stream, 0, 10–15 and 160 m) from lowland streams were examined across the dry season landscape in Kakadu National Park, northern Australia. Malaise traps and sticky intercept traps were used to sample the insects at four streams, spaced over an area of 1650 km2. Malaise and intercept catches were dominated by Diptera (flies and midges), both numerically and by biomass. Chironomid midges were the most abundant taxon, making up 43.4 and 51.0% of the malaise and intercept trap catches, respectively. However, most chironomids were small (less than 3 mm body length), contributing 34.9% to intercept trap biomass, but only 5.2% in malaise traps. Ceratopogonid midges and caddisflies (Trichoptera) accounted for most of the remaining adult aquatic insects. Major terrestrial components were Diptera and Hymenoptera in malaise traps and Coleoptera and Diptera in intercept traps. The total abundance and biomass of insects were much greater over streams and along the water's edge than in riparian (10–15 m) and savanna (160 m) habitats primarily because of the presence of large numbers of adult aquatic insects. The abundance and biomass of terrestrial insects in malaise traps showed no relationship with distance, but intercept trap catches suggested slightly greater abundances over the water and at the water's edge. The great abundance of aquatic insects relative to terrestrial insects close to streams suggests that they have the potential to be an important component of the diets of riparian insectivores, and predation may be an important pathway by which aquatic nutrients and energy are moved into terrestrial food webs.  相似文献   

15.
Sellner  K. G.  Olson  M. M.  Kononen  K. 《Hydrobiologia》1994,(1):249-254
Blooms of the cyanobacteria Nodularia spumigena and Aphanizomenon flos-aquae dominated the phytoplankton assemblages of the western Gulf of Finland and the eastern side of the northern Baltic Sea in late July–August, 1992. The bloom overlapped the peak seasonal contributions of the dominant mesozooplankton herbivores in the region, the copepods Acartia bifilosa and Eurytemora affinis and the cladoceran Bosmina longispina maritima. Using radio-labelling techniques; the copepods were offered one of the cyanobacteria, Nodularia, as well as the 10–54 µm fraction of the natural phytoplankton assemblage. In general, incorporation rates of the labelled phytoplankton into the copepods declined with increasing contributions of the cyanobacteria. For both copepods, incorporation was inversely related to total phytoplankton biomass, whether measured as chlorophyll, total cells or cyanobacteria biomass. The very low rates for Acartia (< 0.8 µl [copepod h]–1) indicated that this copepod was likely starving in the cyanobacteria bloom, consistent with the generally poor condition of the animal observed in the laboratory. The other major mesozooplanktor, B. longispina maritima, ingested substantially more cyanobacterial biomass than the two copepods, based on HPLC-identified cyanobacteria-specific pigment echinenone in the gut. Bloom carbon provided < 1% and < 4% of the daily rations for Acartia and Eurytemora, respectively. Total copepod demand in the cyanobacteria blooms was trivial, < 1% of bloom biomass consumed daily. These results suggest that copepod herbivory is relatively unimportant in dissipating summer cyanobacteria blooms in the Gulf of Finland.  相似文献   

16.
Changes in the quantitative characteristics and functioning of phytoplankton in Lake Bol’shie Shvakshty have been assessed. The changes are evoked by the introduction of herbivorous fishes into the lake and the resulting disturbance of ecological balance in the ecosystem and the shift of the lake into a hypertrophic state from a weakly eutrophic state. Human interference has caused the cyanobacteria density (abundance) and biomass values in the overall phytoplankton composition to strongly exceed (3.5 × 109 cells/L and above 68 μg/L chlorophyll-а, respectively) the threshold value for safe recreational use of water bodies (20 million cells/L and 10 μg/L chlorophyll-а) established by the World Health Organization (WHO). The lake can be assigned to the third level of hazard to human health within the classification proposed by the WHO, as the cyanobacteria density is higher than 100 million cells/L and chlorophyll-а content is higher than 50 μg/L. MC-producing Microcystis species were identified among the cyanobacteria that has propagated in the lake in recent years, and five microcystin variants, including the highly toxic MC-LR, have been detected in the water.  相似文献   

17.
1. Published studies show that cyanobacteria have higher Fe requirements than eukaryotic algae. To test whether Fe availability can affect formation of a cyanobacterial bloom, a strong Fe chelator, oxine (8‐hydroxyquinoline, C9H7NO), was added to enclosures in eutrophic Lake 227 in the Experimental Lakes Area (ELA) (northwestern Ontario). 2. Aphanizomenon schindlerii growth was suppressed, and growth of eukaryotic chlorophytes significantly promoted in enclosures to which oxine had been added. Significant eukaryotic growth did not occur in enclosures treated with ammonium, suggesting that N supplied by degradation of oxine was not responsible for eukaryotic success in the oxine enclosures. 3. In situ Fe2+ measurements were unreliable because of interference from high concentrations of dissolved organic compounds. However, oxine rapidly promoted oxidation of Fe2+ to Fe3+ in deionised water, suggesting that rapid removal of Fe2+ also occurred in the oxine‐treated enclosures. 4. In batch cultures, 10 μm Fe and 10 μm oxine (a 1 : 1 ratio) completely inhibited the growth of the cyanobacteria Synechococcus sp. and Anabaena flos‐aquae and the chlorophytes Pseudokirchneriella subcapitata and Scenedesmus quadricauda. Increasing Fe 10‐fold to 100 μm Fe completely and partially reversed oxine inhibition in the two chlorophytes but could not overcome inhibition of the cyanobacteria, indicating that inhibition was Fe‐mediated at least in the eukaryotes. Since oxine binds Fe3+ in a 1 : 3 ratio (Fe : oxine), inhibition at a 1 : 1 ratio indicates that not all of the Fe is bound, and a mechanism involving Fe other than chelation was at least partly responsible for inhibition. 5. Collectively, the enclosure and laboratory results suggest that the outcome of competition between cyanobacteria and eukaryotic algae in the oxine‐treated enclosures in Lake 227 was likely a result of decreased availability of Fe, especially Fe2+. 6. The results suggest that remediation methods that dramatically restrict the supply rate of Fe2+ could reduce the relative abundance of cyanobacteria in eutrophic systems.  相似文献   

18.
Phototrophic picoplankton were detected in 105-106 cells/ml concentrations in seven water bodies of differing chemistry and trophic level. Dominant picoplankters were, at all sites, coccoid cyanobacteria of 0.8-1.2 μm dimensions, exhibiting red or yellow autofluorescence. Apart from the effects of water temperature their quantitative dynamics were significantly influenced by the nitrogen supply and the herbivorous zooplankton (Cladocera). Their maximum contribution to the total planktonic primary production was about 50%, both in mesotrophic and hypereutrophic environments. However during the bloom of filamentous nitrogen-fixing blue-greens their role became negligible. In phytoplankton communities the significance of picoplankton is overestimated several times, when based on the cell count, while it is underestimated on the basis of biomass. The most useful characteristics of phytoplankton size groups was the total surface area of their cells.  相似文献   

19.
The seasonal distribution of autotrophic picoplankton in Lake Constance was investigated over four consecutive years. Cell numbers varied seasonally and vertically over four orders of magnitude (102 to 106 cells ml−1). A horizontal variation by a factor of 3 in abundance and biomass across the different parts of the lake was found during summer stratification. Picoplankton peaks occurred during the phytoplankton spring bloom and in late summer. Low values were characteristic for the clear-water phase in early summer and for autumn-winter. This seasonal pattern differed from that of larger phytoplankton in Lake Constance and from the seasonal distribution of picoplankton known from other lakes and marine environments. Picoplankton was predominated by chroococcoid cyanobacteria of about 0.6 μ3 biovolume. The average cell size increased from winter until early summer. Using HPLC pigment analysis, we identified zeaxanthin and β-carotene as typical picoplankton pigments. Results of the pigment analyses suggest that algae others than picocyano-bacteria may be more prominent in the picoplankton size class than derived from routine epifluorescence counting.  相似文献   

20.
The abundance and metabolic capacities of microorganisms residing in 49 sediment samples from 4 boreholes in Atlantic Coastal Plain sediments were examined. Radiolabeled time-course experiments assessing in situ mirobial capacities were initiated within 30 min of core recovery. Acetate (1-14C- and3H-) incorporation into lipids, microbial colony forming units, and nutrient limitations were examined in aliquots of subsurface sediments. Water-saturated sands exhibited activity and numbers of viable microorganisms that were orders of magnitude greater than those of the low permeability dense clays. Increased radioisotope utilization rates were observed after 6–24-h incubation times when sediments were amended with additional water and/or nutrients. Supplements of water, phosphate, nitrate, sulfate, glucose, or minerals resulted in the stimulation of microbial activities, as evidenced by the rate of acetate incorporation into microbial lipids. Additions of water or phosphate resulted in the greatest stimulation of microbial activities. Regardless of depth, sediments that contained >20% clay particles exhibited lower activities and biomass densities, and greater stimulation with abundant water supplementation than did sediments containing >66% sands and hydraulic conductivities > 200 μm sec.?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号