首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dielectric relaxation of DNA in aqueous solutions.   总被引:1,自引:0,他引:1  
Using a four-electrode cell and a new electronic system for direct detection of the frequency differences specturm of solution impedance, the complex dielectric constant of calf thymus DNA (Mr = 4 × 106) in aqueous NaCl at 10°C is measured at frequencies ranging from 0.2 Hz to 30 kHz. The DNA concentrations are Cp = 0.01% and 0.05%, and the NaCl concentrations are varied from Cs = 10?4 M to 10?3 M. A single relaxation regions is found in this frequency range, the relaxation frequency being 10 Hz at Cp = 0.01% and Cs = 10?3 M. At Cp = 0.05% it is evidenced that the DNA chains have appreciable intermolecular interactions. The dielectric relaxaton time τd at Cp = 0.01% agrees well with the rotational relaxation time estimated from the reduced visocisty on the assumption that the DNA is not representable as a rigid rod but a coiled chain. It is concluded that the dielectric relaxiatioinis ascribed to the rotation of the molecule. Observed values of dielectric increment and other experimental findings are reasonably explained by assuming that the dipole moment of DNA results from the slow counterion fluctuation which has a longer relaxation time than τd.  相似文献   

2.
3.
Fumio Oosawa 《Biopolymers》1968,6(1):135-144
A theoretical analysis is given on the effect of low molecular salts on the titration behavior of partially neutralized linear polyacids or polybases. On the basis of the additivity law experimentally and theoretically established on the activity of counterions in polyelectrolyte solutions containing salts, the chemical potential of alkali added for neutralization of polyacids is derived as a function of the salt concentration. The relation between the pH and the salt, concentration at constant degree of neutralization is expressed by pH(cs) ? pH(0) = ({[? (γpCa)/?Ca]/γos} ? 1) ln [1 + (γosCspCA)] where Ca is the concentration of alkali, C8, the concentration of salts, γp is the activity coefficient of counterions in the absence of salts and γos is that in the absence of polyelectrolytes. This relation is found to be in good agreement with experimental data obtained in synthetic linear polyelectrolytes as well as in rodlike charged proteins. Therefore, it is concluded that the titration behavior of linear polyions can be understood from the special feature of the integrated coulomb interaction between linear polyions and small ions which was essential for the additivity law. In addition, the screening effect of salts on the electric potential around the polyion is discussed.  相似文献   

4.
Thermal denaturation of Na- and Li-DNA from chicken erythrocytes was studied by means of scanning microcalorimetry in salt-free solutions at DNA concentrations (Cp) from 4.5 · 10?2 to 1 · 10?3 moles of nucleotides/liter (M). Linear dependencies of DNA melting temperature (Tm) vs lgCp were obtained: ((1)) ((2)) for Na- and Li-DNA, respectively. Microcalorimetry data were compared with the results of spectrophotometric studies at 260 nm of DNA thermal denaturation in Me-DNA + MeCl solutions at Cp ? (6–8) · 10?5 M and Cs = 0–40 mM (Me is Na or Li, Cs is salt concentration). It was found that Eqs. (1) and (2) are valid in DNA salt-free solutions over the Cp range 6 · 10?5?4.5 · 10?2M. Protonation of DNA bases due to the absorption of CO2 from air in Na-DNA + NaCl solutions affects DNA melting parameters at Cs < 4 mM. Linear dependence of Tm on lga+ is found in Na-DNA + NaCl at Cs > 0.4 mMin the absence of contact of solutions with CO2 from air (a+ is cation activity). A dependence of [dTm/dlga+] on Li+ activity was observed in Li-DNA + LiCl solutions at Cs < 10 mM: [dTm/dlga+] increases from 17°–18° at Cs > 10 mM to 28°–30° at Cs ? 0.2–0.4 mM. Spectrophotometric measurements at 282 nm show that this effect was caused by protonation of bases in fragments of denatured DNA in neutral solutions. The Poisson–Boltzmann (PB) equation was solved for salt-free DNA at the melting point. The linear dependence of Tm vs lgCp was interpreted in terms of Manning's condensation theory. PB and Manning's theories fit the experimental data if charge density parameter (ξ) of denatured DNA is in the range 1.8–2.1 (assuming for native DNA ξ = 4.2). Specificity of Li ions in interactions with DNA is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Fumio Oosawa 《Biopolymers》1968,6(1):145-158
The effect of low molecular salts on the conformation of linear polyions is analyzed on the basis of the additivity law for the thermodynamic properties of polyelectrolytes in the presence of salts. In the case of flexible polyions the theory shows that the logarithm of the conformation parameter changes proportional to A ln (1 + γs0CspCp) as a function of the salt concentration cs, where cp is the concentration of counterions from polyelectrolytes and γp and γs0 are the activity coefficient of counterions from polyelectrolytes in the absence of salts and from salts in the absence of polyelectrolytes, respectively. In the case of the discontinuous transition of the conformation of polyions, it is shown that the change of the transition point by salts is proportional to the same factor as the above. The constant A, which determines the magnitude of the effect of salts, is proportional to the sensitivity of the activity coefficient to the conformation of polyions in the absence of salts. A similar analysis is made for the conformational change due to dilution by the addition of solvent. These theoretical results are found to be in good agreement with experimental data on the viscosity of flexible polyions and on the helix–coil transition of biopolymers. The interrelation between these conformational changes and various thermodynamic properties of polyelectrolytes with salts is discussed.  相似文献   

6.
Three-month-old mulberry (Morus alba L.) cultivars (salt tolerant cv. S1 and salt sensitive cv. ATP) were subjected to different concentrations of NaCl for 12 d. Leaf area, dry mass accumulation, total chlorophyll (Chl) content, net CO2 assimilation rate (P N), stomatal conductance (g s), and transpiration rate (E) declined, and intercellular CO2 concentration (C i) increased. The changes in these parameters were dependent on stress severity and duration, and differed between the two cultivars. The tolerant cultivar showed a lesser reduction in P N and g s coupled with a better C i and water use efficiency (WUE) than the sensitive cultivar. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Abstract. The significance of blue light-stimulated stomatal conductance for carbon assimilation (A), stomatal conductance (g), intercellular CO2 (Ci), stomatal limitation of A (L), transpiration (E) and water use efficiency (W = A/E), was determined in a C4 and a C3 species. W and L were evaluated for steady-state gas exchange with constant, saturating red light (As, gs, Es), and for the integrated gas exchange above the steady state baseline induced by a single, brief pulse of blue light (Ap, gp, Ep). Sugarcane (Saccharum spp. hybrid), a C4 grass, and soybean (Glycine max) a C3 dicot, were compared. Sugarcane exhibited typical C4 behaviour, with A saturing at Ci of ca. 200 μmol mol?1, compared to >500 μmol mol?1 in soybean. Steady-state W was also considerably higher in sugarcane. The extent of stomatal opening in response to a blue light pulse, from baseline (gs) to the maximum value of conductance during the opening response (gm), was similar in the two species. More rapid opening and closing of stomata in sugarcane resulted in a smaller integrated magnitude of the conductance response (gp) than in soybean. At the peak of the blue light response, both species exhibited similar levels of L. During the response to the pulse of blue light, A and Ci increased and L decreased to a greater extent in sugarcane than in soybean. As a result, the gas exchange attributed to the stomatal response to blue light exhibited a higher ratio of Ap to Ep (Wp) in sugarcane than in soybean. This Wp was lower in both species than was the Ws associated with the steady state gas exchange. The two species did not differ in the rate of induction of photosynthetic utilization of elevated Ci. The greater stimulation of A in sugarcane was attributed to its C4 attributes of greater carboxylation efficiency (slope of the A versus Ci relationship), lower gs and prevailing Ci,s, and greater Ls under steady-state red illumination. Despite saturation of A at low levels of Ci in C4 species, the gas exchange attributed to the stomatal response to blue light decreased L and contributed considerably to carbon acquisition, while maintaining the high level of W associated with C4 metabolism.  相似文献   

8.
This work is a study of the inter‐relationship between parameters that principally affect the metal up‐take in the plant. The relationships between the concentration of metal in the growth medium, Cs, the concentration of metal absorbed by the plant, Cp, and the total biomass achieved, M, all of which are factors relevant to the efficiency of phytoremediation of the plant, have been investigated via the macro‐physiological response of Brassica juncea seedlings to Ni(II) stress. The factorial growth experiments treated the Ni(II) concentration in the agar gel and the diurnal light quanta (DLQ) as independently variable parameters. Observations included the evidence of light enhancement of Ni toxicity at the root as well as at the whole plant level, the shoot mass index as a possible indicator of shoot metal sequestration in B. juncea, the logarithmic variation of Cp with Cs and the power‐law dependence of M on Cp. The sum total of these observations indicates that for the metal accumulator B. juncea with regard to its capacity to accumulate Ni, the overall metabolic nature of the plant is important – neither rapid biomass increase nor a high metal concentration capability favor the removal of high metal mass from the medium, but rather the plant with the moderate photosynthetically driven biomass growth and moderate metal concentrations demonstrated the ability to remove the maximum mass of metal from the medium. The implications of these observations in the context of the perceived need in phytoremediation engineering to maximize Cp and M simultaneously in the same plant, are discussed.  相似文献   

9.
Penicillin G (2%, w/v in phosphate buffer, pH 8) was hydrolysed in a flow-through, miniature electro-membrane reactor with the penicillin G acylase immobilized in 5% (w/v) polyacrylamide (diam. 10 mm, thickness 2.6 mm, enzyme activity 24 U ml–1). The conversion of penicillin G increased from 0.15 to almost 0.5 when the electric current applied to the reactor was changed from –600 to +600 A/m2 with a substrate residency of 1 h. Symbols and abbreviations c j p & concentration of component j in product stream (M) c j s & concentration of component j in substrate stream (M) c s o & substrate concentration at reactor inlet (M) C j p=c j p/c S 0 & scaled concentration of component j in product stream C j s=c j s/c S 0 & scaled concentration of component j in substrate stream i & electric current density (A/m2) j & reaction component, j P, Q or S P & main reaction product (6-aminopenicillanic acid) PGA & penicillin G acylase Q & side reaction product (phenylacetic acid) S & substrate (penicillin G) Y s=C P s+C P p & substrate conversion & mean residence time of substrate and product streams in reactor (h) =C Q s+C Q p+C S s+C S s & check-sum of scaled concentrations =C P p/(C P s+C P p) & separation factor of 6-aminopenicillanic acid (0 1)  相似文献   

10.
11.
The complex dielectric constant of collagen in aqueous solutions (polymer concentration, Cp = 0.02–0.2%) was measured at 10°C in the frequency range from 3 Hz to 30 kHz. The loss peak for Cp = 0.02% is located at 90 Hz and the dielectric relaxation time τD is estimated to be 1.8 ± 0.3 msec. The τD agrees well with the rotational relaxation time estimated from the reduced viscosity, and the relaxation is ascribed to the end-over-end rotation of the molecule. The Cp dependence of τD and the dielectric increment Δε are interpreted in terms of the aggregation of molecules. The dipole moment of a molecule, obtained from Δε at Cp = 0.02% and pH 6.5, is (5.2 ± 0.2) × 104D, which is explained by the asymmetrical distribution of the ionized side chains of the molecule.  相似文献   

12.
In this study it has been shown that increased diffusional resistances caused by salt stress may be fully overcome by exposing attached leaves to very low [CO2] (~ 50 µmol mol?1), and, thus a non‐destructive‐in vivo method to correctly estimate photosynthetic capacity in stressed plants is reported. Diffusional (i.e. stomatal conductance, gs, and mesophyll conductance to CO2, gm) and biochemical limitations to photosynthesis (A) were measured in two 1‐year‐old Greek olive cultivars (Chalkidikis and Kerkiras) subjected to salt stress by adding 200 mm NaCl to the irrigation water. Two sets of ACi curves were measured. A first set of standard ACi curves (i.e. without pre‐conditioning plants at low [CO2]), were generated for salt‐stressed plants. A second set of ACi curves were measured, on both control and salt‐stressed plants, after pre‐conditioning leaves at [CO2] of ~ 50 µmol mol?1 for about 1.5 h to force stomatal opening. This forced stomata to be wide open, and gs increased to similar values in control and salt‐stressed plants of both cultivars. After gs had approached the maximum value, the ACi response was again measured. The analysis of the photosynthetic capacity of the salt‐stressed plants based on the standard ACi curves, showed low values of the Jmax (maximum rate of electron transport) to Vcmax (RuBP‐saturated rate of Rubisco) ratio (1.06), that would implicate a reduced rate of RuBP regeneration, and, thus, a metabolic impairment. However, the analysis of the ACi curves made on pre‐conditioned leaves, showed that the estimates of the photosynthetic capacity parameters were much higher than in the standard ACi responses. Moreover, these values were similar in magnitude to the average values reported by Wullschleger (Journal of Experimental Botany 44, 907–920, 1993) in a survey of 109 C3 species. These findings clearly indicates that: (1) salt stress did affect gs and gm but not the biochemical capacity to assimilate CO2 and therefore, in these conditions, the sum of the diffusional resistances set the limit to photosynthesis rates; (2) there was a linear relationship (r2 = 0.68) between gm and gs, and, thus, changes of gm can be as fast as those of gs; (3) the estimates of photosynthetic capacity based on ACi curves made without removing diffusional limitations are artificially low and lead to incorrect interpretations of the actual limitations of photosynthesis; and (4) the analysis of the photosynthetic properties in terms of stomatal and non‐stomatal limitations should be replaced by the analysis of diffusional and non‐diffusional limitations of photosynthesis. Finally, the C3 photosynthesis model parameterization using in vitro‐measured and in vivo‐measured kinetics parameters was compared. Applying the in vivo‐measured Rubisco kinetics parameters resulted in a better parameterization of the photosynthesis model.  相似文献   

13.
14.
M Sakamoto  R Hayakawa  Y Wada 《Biopolymers》1979,18(11):2769-2782
As a continuation of previous papers [Biopolymers (1976) 15 , 879; (1978) 17 , 1508], the low-frequency dielectric relaxation of DNA solutions was studied with a four-electrode cell and the simultaneous two-frequency measurement. Below a critical concentration, the dielectric relaxation time agrees with the rotational relaxation time estimated from the reduced viscosity and is almost independent of DNA concentration Cp, and the dielectric increment is proportional to Cp. The critical concentration is approximately 0.02% of DNA for molecular weight Mr 2 × 106 and 0.2% for Mr 4.5 × 105 in 1 mM NaCl. Dielectric relaxations are compared for samples before and after deproteinization, and the protein contamination is found to have a minor effect on the dipole moment of DNA. The effect of a mixed solvent of water and ethanol on the dielectric relaxation of DNA is well interpreted in terms of changes in viscosity and the dielectric constant of the solvent, assuming that the relaxation arises from rotation of the molecule with a quasi-permanent dipole due to counterion fluctuation.  相似文献   

15.
Summary The influence of the concentrations of NaCl, NaJ, KJ and/or Na2SO4 on the foaminess of BSA solutions is investigated. The foaminess increases with increasing salt concentrations as expected for NaCl, NaJ and Na2SO4. With KJ the foaminess exhibits an anomaly. The dependence of the foaminess on the pH is complex. In the presence of buffer there is a minimum at 4.81 and a maximum at 4.7. In the absence of buffer the foaminess reaches a maximum at pH 4 and a minimum at 3. The anomaly of BSA solutions is well-known but not yet fully understood.Symbols BSA Bovine Serum Albumin - C concentration - CBSA concentration of BSA - CBUFFER concentration of buffer - CSALT concentration of salt - Vs equilibrium volume of the foam - Vtg volumetric gas flow rate - =Vs/Vtg foaminess  相似文献   

16.
A biological system consisting of a population of cells suspended in a liquid substrate is considered. The general problem addressed in the paper is the derivation of the kinetic pattern of population growth as a statistical effect of a very large number of elementary interactions between a single cell and the molecules of nutrient in substrate. Solution of the problem is obtained in the form of equation expressing the population growth ratec as a function of substrate concentration,C s. The analytical expression derived is applied to a real bacterial population (Escherichi coli) and kinetic patterns are theoretically computed. The major findings, expressed roughly, without nuances, are: (i) the concentration of nutrient at the cell membrane,C c, can only be equal to either 0 (for theC s below some threshold valueC *) orC s (forC s>C *); (ii) the Michaelis-Menten-Monod kinetics observed in experiments is an artifact: the pure (not contaminated by foreign factors) dependence ofc onC s is actually such that the functionc=c(C s) has practically linear increase whenC s<C *, and is constant,c=c(C *)=const, whenC s>C *; (iii) the Liebig principle is strictly fulfilled: up to a feasible accuracy of observation, under no circumstances can population growth be limited (controlled) by more than one substrate component—replacement of a limiting component for another one is an instant event rather than a gradual process.  相似文献   

17.
Quasi-elastic light scattering studies on some polyelectrolyte systems exhibit a somewhat “bizarre” behavior in the profile of the apparent diffusion coefficient Dapp as a function of the salt concentration Cs. As Cs is decreased, Dapp first increases in accordance with polyelectrolyte theories, and then undergoes a precipitous drop in value by over an order of magnitude at a well-defined critical value Cs = C. This “transition” from Cs > C (ordinary) to Cs < C (extraordinary) is referred to as the “ordinary-extraordinary” (o-e) transition. Ghosh, Peitzsch, and Reed [(1992) Biopolymers, Vol. 32, pp. 1105–1122] proposed a “filterable aggregate” (FA) and “other particle” interpretation for the o-e transition and its reversibility in regard to ionic strength changes. The present communication examines in detail the FA model as applied to the o-e transition. It is shown that the FA model fails to account of the established characteristics of the o-e transition. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The energy cost per unit of distance (C s, kilojoules per metre) of the front-crawl, back, breast and butterfly strokes was assessed in 20 elite swimmers. At sub-maximal speeds (v), C s was measured dividing steady-state oxygen consumption (O2) by the speed (v, metres per second). At supra-maximal v, C s was calculated by dividing the total metabolic energy (E, kilojoules) spent in covering 45.7, 91.4 and 182.9 m by the distance. E was obtained as: E = E an+O2max t pO2max(1−e−( t p/)), where E an was the amount of energy (kilojoules) derived from anaerobic sources, O2max litres per second was the maximal oxygen uptake, α (=20.9 kJ · l O2 −1) was the energy equivalent of O2, τ (24 s) was the time constant assumed for the attainment of O2max at muscle level at the onset of exercise, and t p (seconds) was the performance time. The lactic acid component was assumed to increase exponentially with t p to an asymptotic value of 0.418 kJ · kg−1 of body mass for t p ≥ 120 s. The lactic acid component of E an was obtained from the net increase of lactate concentration after exercise (Δ[La]b) assuming that, when Δ[La]b = 1 mmol · l−1 the net amount of metabolic energy released by lactate formation was 0.069 kJ · kg−1. Over the entire range of v, front crawl was the least costly stroke. For example at 1 m · s−1, C s amounted, on average, to 0.70, 0.84, 0.82 and 0.124 kJ · m−1 in front crawl, backstroke, butterfly and breaststroke, respectively; at 1.5 m · s−1, C s was 1.23, 1.47, 1.55 and 1.87 kJ · m−1 in the four strokes, respectively. The C s was a continuous function of the speed in all of the four strokes. It increased exponentially in crawl and backstroke, whereas in butterfly C s attained a minimum at the two lowest v to increase exponentially at higher v. The C s in breaststroke was a linear function of the v, probably because of the considerable amount of energy spent in this stroke for accelerating the body during the pushing phase so as to compensate for the loss of v occurring in the non-propulsive phase. Accepted: 14 April 1998  相似文献   

19.
To investigate the variations of anatomical and photosynthetic carbon metabolic characteristics within one species in response to increasing soil water stress, leaf anatomical characteristics, gas exchange and the activity of key enzymes in photosynthesis and photorespiration were compared in different ecotypes of Phragmites communis growing in an oasis-desert transitional zone (ODTZ) from swamp habitat (plot 1–3) via heavy salt meadow (plot 4–7) and light salt meadow habitat (plot 8–9) to dune habitat (plot 10–13) in Northwest China. The results showed that interveinal distance (ID) decreased with increasing water stress except that in plots of dune reed (DR). Vein mean diameter (VMD) in plot 10, 11 and 12 of the DR was significantly larger than that in other ecotypes. Leaf specific porosity (LSP) enhanced from plot 4 to plot 13 from heave salt meadow reed (HSMR) to light salt meadow reed (LSMR) and to DR. Chlorophyll fluorescence in bundle sheath cells were microscopically found in four ecotypes, especially significantly in the DR. Net CO2 assimilation rate (A n) dropped rapidly from the swamp reed (SR) to the HSMR and then increased progressively from the LSMR to the DR. Stomatal conductance (g s) decreased and the water use efficiency (WUE) rose from the wet to the dry ecotypes. Sensitivity of g s to intercellular CO2 concentration (C i) increased, but glycolate oxidase (GO) activity gradually reduced with increasing soil water deficiency. The RuBPCase activity did not reduce in four ecotypes even in DR, but, the PEPCase and NAD-ME activities as well as the ratio of PEPCase/RuBPCase were gradually enhanced with increasing soil water stress. We concluded that anatomical and photosynthetic carbon assimilating characteristics in P. communis were developing to the direction of C4 metabolism in response to the increasing drought stress in desert areas. The DR enduring severe water stress had more C4 like photosynthetic features than the HSMR and LSMR as well as SR, according to significantly increased VMD and LSP and higher g s sensitivity to C i as well as higher PEPCase activity and lower GO activity in the DR.  相似文献   

20.
Kumar  S. Giridara  Lakshmi  A.  Madhusudhan  K.V.  Ramanjulu  S.  Sudhakar  C. 《Photosynthetica》2000,36(4):611-616
Three-month-old mulberry (Morus alba L.) cultivars (salt tolerant cv. S1 and salt sensitive cv. ATP) were subjected to different concentrations of NaCl for 12 d. Leaf area, dry mass accumulation, total chlorophyll (Chl) content, net CO2 assimilation rate (P N), stomatal conductance (g s), and transpiration rate (E) declined, and intercellular CO2 concentration (C i) increased. The changes in these parameters were dependent on stress severity and duration, and differed between the two cultivars. The tolerant cultivar showed a lesser reduction in P N and g s coupled with a better C i and water use efficiency (WUE) than the sensitive cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号