首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5' terminal oligopyrimidine tract (5'TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.  相似文献   

3.
Iron regulatory protein-1 (IRP-1) is a cytosolic RNA-binding protein that is a regulator of iron homeostasis in mammalian cells. IRP-1 binds to RNA structures, known as iron-responsive elements, located in the untranslated regions of specific mRNAs, and it regulates the translation or stability of these mRNAs. Iron regulates IRP-1 activity by converting it from an RNA-binding apoprotein into a [4Fe-4S] cluster protein exhibiting aconitase activity. IRP-1 is widely found in prokaryotes and eukaryotes. Here, we report the biochemical characterization and regulation of an IRP-1 homolog in Caenorhabditis elegans (GEI-22/ACO-1). GEI-22/ACO-1 is expressed in the cytosol of cells of the hypodermis and the intestine. Like mammalian IRP-1/aconitases, GEI-22/ACO-1 exhibits aconitase activity and is post-translationally regulated by iron. Although GEI-22/ACO-1 shares striking resemblance to mammalian IRP-1, it fails to bind RNA. This is consistent with the lack of iron-responsive elements in the C. elegans ferritin genes, ftn-1 and ftn-2. While mammalian ferritin H and L mRNAs are translationally regulated by iron, the amounts of C. elegans ftn-1 and ftn-2 mRNAs are increased by iron and decreased by iron chelation. Excess iron did not significantly alter worm development but did shorten their life span. These studies indicated that iron homeostasis in C. elegans shares some similarities with those of vertebrates.  相似文献   

4.
5.
6.
Radioactive iron incorporated into rat liver ferritin in vivo and then released in vitro up to 24h after injection follows 'last-in-first-out' behaviour. Thus, within this period at least, the added iron does not equilibrate with iron already present in the molecule's iron-core.  相似文献   

7.
8.
9.
Rat liver mitochondria and rat liver mitoplasts mobilize iron from ferritin by a mechanism which depends on a respiratory substrate (preferentially succinate), a small molecular weight electron mediator (FMN, phenazine methosulphate or methylene blue) and (near) anaerobic conditions. The release process under optimized conditions (approx. 50 mumol/1 FMN, 1 mmol/l succinate, 0.35 mmol/1 Fe(III) (as ferritin iron), 37 degrees C and pH 7.40) amounts to 0.9--1.2 nmol iron/mg protein per min. The results suggest that ferritin might function as an intermediate in the cytosolic transport of iron to the mitochondria.  相似文献   

10.
11.
12.
The effect of iron on ferritin turnover in rat liver   总被引:1,自引:0,他引:1  
125I-labelled angiotensin II (A II) specifically binds to solubilized receptors extracted from rat isolated glomeruli using CHAPS (3-[3-( cholamidopropyl ) dimethylammonio ]-1-propanesulfonate). The yield of solubilization of the binding sites was 3.3%. Equilibrium was reached after 15-20 min and specific binding represented 75% of total binding. Dissociation of the hormone-receptor complex after addition of an excess of A II was very slow in the presence of Ca2+ and Mg2+. [Sar1 Ala8] A II and [Sar1 Ile8] A II were more potent as competitive inhibitors of 125I-labelled A II than A II itself and its heptapeptide. These basic features of 125I-labelled A II binding to the extracted material were similar to those observed previously with untreated glomeruli.  相似文献   

13.
Rat liver mitochondria and rat liver mitoplasts mobilize iron from ferritin by a mechanism which depends on a respiratory substrate (preferentially succinate), a small molecular weight electron mediator (FMN, phenazine methosulphate or methylene blue) and (near) anaerobic conditions.The release process under optimized conditions (approx. 50 μmol/l FMN, 1 mmol/l succinate, 0.35 mmol/l Fe(III) (as ferritin iron), 37°C and pH 7.40) amounts to 0.9–1.2 nmol iron/mg protein per min.The results suggest that ferritin might function as an intermediate in the cytosolic transport of iron to the mitochondria.  相似文献   

14.
15.
Ferritin and its protein subunits in rat hepatoma cell clone M-5123-C1 were biosynthetically labeled with [14C]leucine and 59Fe. Radioimmunoassays of ferritin/apoferritin and of protein subunits in the free polyribosome, membrane-bound polyribosome, smooth membrane, and cytosol fractions were done with ferritin-specific and subunit-specific rabbit IgG antibodies at various time intervals after pulsing. Much more 59Fe was bound by ferritin/apoferritin than by subunits in all of the cell fractions. Binding of iron to subunits may have been a random process. When hepatoma cells were simultaneously pulse-labeled with 59Fe and [14C]leucine, uptake of much of the 59Fe by ferritin occurred relatively early, in comparison to incorporation of [14C]leucine, in all of the cell fractions examined. Thus, 59Fe was readily incorporated into pre-existing ferritin. We conclude that most, if not nearly all, of the iron is incorporated after assembly of protein subunits.  相似文献   

16.
17.
18.
The allosteric enzyme ADP-Glc pyrophosphorylase (AGPase) catalyzes the synthesis of ADP-Glc, a rate-limiting step in starch synthesis. Plant AGPases are heterotetramers, most of which are activated by 3-phosphoglyceric acid (3-PGA) and inhibited by phosphate. The objectives of these studies were to test a hypothesis concerning the relative roles of the two subunits and to identify regions in the subunits important in allosteric regulation. We exploited an Escherichia coli expression system and mosaic AGPases composed of potato (Solanum tuberosum) tuber and maize (Zea mays) endosperm subunit fragments to pursue this objective. Whereas potato and maize subunits have long been separated by speciation and evolution, they are sufficiently similar to form active mosaic enzymes. Potato tuber and maize endosperm AGPases exhibit radically different allosteric properties. Hence, comparing the kinetic properties of the mosaics to those of the maize endosperm and potato tuber AGPases has enabled us to identify regions important in regulation. The data herein conclusively show that both subunits are involved in the allosteric regulation of AGPase. Alterations in the small subunit condition drastically different allosteric properties. In addition, extent of 3-PGA activation and extent of 3-PGA affinity were found to be separate entities, mapping to different regions in both subunits.  相似文献   

19.
20.
In rats with chronic dietary iron overload, a higher amount of liver ferritin L-subunit mRNA was found mainly engaged on polysomes, whereas in control rats ferritin L-subunit mRNA molecules were largely stored in ribonucleoprotein particles. On the other hand, ferritin H-subunit mRNA was unchanged by chronic iron load and remained in the inactive cytoplasmic pool. In agreement with previous reports, in rats acutely treated with parenteral iron, only the ferritin L-subunit mRNA increased in amount, whereas both ferritin subunit mRNAs shifted to polysomes. This may indicate that, whereas in acute iron overload the hepatocyte operates a translation shift of both ferritin mRNAs to confront rapidly the abrupt entry of iron into the cell, during chronic iron overload it responds to the slow iron influx by translating a greater amount of L-subunit mRNA to synthesize isoferritins more suitable for long-term iron storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号