首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspartate aminotransferases from pig heart cytosol and mitochondria, Escherichia coli B and Pseudomonas striata accepted L-cysteine sulfinate as a good substrate. The mitochondrial isoenzyme and the Escherichia enzyme showed higher activity toward L-cysteine sulfinate than toward the natural substrates, L-glutamate and L-aspartate. The cytosolic isoenzyme catalyzed the L-cysteine sulfinate transamination at 50% the rate of L-glutamate transamination. The Pseudomonas enzyme had the same reactivity toward the three substrates. Antisera against the two isoenzymes and the Escherichia enzyme inactivated almost completely cysteine sulfinate transamination activity in the crude extracts of pig heart muscle and Escherichia coli B, respectively. These results indicate that cysteine sulfinate transamination is catalyzed by aspartate aminotransferase in these cells.  相似文献   

2.
In contrast to the major form of human growth hormone the 20,000-dalton (20K) variant of the hormone produced no decrease in either serum glucose of free fatty acids one hour after injection into fasted, hypophysectomized rats. Furthermore, the variant caused no rise in serum free fatty acids after 5 hours. Invitro experiments utilizing epididymal adipose tissue from hypophysectomized rats indicated that 20K was unable to accelerate glucose utilization as measured by glucose uptake and CO2 formation. The data show that this form, even though growth promoting, lacks some of the metabolic properties attributed to growth hormone. We conclude that an insulin-like effect is not necessarily a prerequisite for growth promoting activity.  相似文献   

3.
A general method has been developed for determining the rate of entry of lactose into cells of Escherichia coli that contain β-galactosidase. Lactose entry is measured by either the glucose or galactose released after lactose hydrolysis. Since lactose is hydrolyzed by β-galactosidase as soon as it enters the cell, this assay measures the activity of the lactose transport system with respect to the translocation step. Using assays of glucose release, lactose entry was studied in strain GN2, which does not phosphorylate glucose. Lactose entry was stimulated 3-fold when cells were also presented with readily metabolizable substrates. Entry of o-nitrophenyl-β-d-galactopyranoside (ONPG) was only slightly elevated (1.5-fold) under the same conditions. The effects of arsenate treatment and anaerobiosis suggest that lactose entry may be limited by the need for reextrusion of protons which enter during H+/sugar cotransport. Entry of o-nitrophenyl-β-d-galactopyranoside is less dependent on the need for proton reextrusion, probably because the stoichiometry of H+/substrate cotransport is greater for lactose than for ONPG.  相似文献   

4.
Phloretin is an inhibitor of anion exchange and glucose and urea transport in human red cells. Equilibrium binding and kinetic studies indicate that phloretin binds to band 3, a major integral protein of the red cell membrane. Equilibrium phloretin binding has been found to be competitive with the binding of the anion transport inhibitor, 4,4′-dibenzamido-2,2′-disulfonic stilbene (DBDS), which binds specifically to band 3. The apparent binding (dissociation) constant of phloretin to red cell ghost band 3 in 28.5 mM citrate buffer, pH 7.4, 25°C, determined from equilibrium binding competition, is 1.8 ± 0.1 μM. Stopped-flow kinetic studies show that phloretin decreases the rate of DBDS binding to band 3 in a purely competitive manner, with an apparent phloretin inhibition constant of 1.6 ± 0.4 μM. The pH dependence of equilibrium binding studies show that it is the charged, anionic form of phloretin that competes with DBDS binding, with an apparent phloretin inhibition constant of 1.4 μM. The phloretin binding and inhibition constants determined by equilibrium binding, kinetic and pH studies are all similar to the inhibition constant of phloretin for anion exchange. These studies suggest that phloretin inhibits anion exchange in red cells by a specific interaction between phloretin and band 3.  相似文献   

5.
Depletion of energy stores of human red cells decreases the maximum transport capacity, Jm, for glucose transport to a value one-third or less of that found in red cells from freshly drawn blood. There is no change in Km. Hemolysis and resealing of red cells with ATP or ADP reverses the decrease in Jm. The maximum effect occurs at concentrations of ATP in the normal range for red cells, however, there is little effect from ADP concentrations in its normal range in freshly drawn red cells. Hemolysis and resealing with ATP gives an increase in Jm and an increase in differential labeling by photolytic labeling with tritiated cytochalasin B. Most of the activation is lost after a second hemolysis-reseal without ATP but about 25% of the activation remains.  相似文献   

6.
The regulatory properties of pig erythrocyte hexokinase III have been studied. Among mammalian erythrocyte hexokinases, the pig enzyme shows the highest affinity for glucose and a positive cooperative effect with nH = 1.5 at all the MgATP concentrations studied (for 0.5 to 5 mm). Glucose at high concentrations is also an inhibitor of hexokinase III. Similarly, the apparent affinity constant for MgATP is independent of glucose concentration. Uncomplexed ATP and Mg are both competitive inhibitors with respect to MgATP. Glucose 6-phosphate, known as a stronger inhibitor of all mammalian erythrocyte hexokinases, is a poor inhibitor for the pig enzyme (Ki = 120 μm). Furthermore, this inhibition is not relieved by orthophosphate as with other mammalian red blood cell hexokinases. A variety of red blood cell-phosphorylated compounds were tested and found to be inhibitors of pig hexokinase III. Of these, glucose 1,6-diphosphate and 2,3-diphosphoglycerate displayed inhibition constants in the range of their intracellular concentrations. In an attempt to investigate the role of hexokinase type III in pig erythrocytes some metabolic properties of this cell have been studied. The adult pig erythrocyte is able to utilize 0.27 μmol of glucose/h/ml red blood cells (RBC) compared with values of 0.56–2.85 μmol/h/ml RBC for the other mammalian species. This reduced capacity to metabolize glucose results from a relatively poor ability of the cell membrane to transport glucose. In fact, all the glycolytic enzymes were present and a low intracellular glucose concentration was measured (0.5 mm against a plasma level of 5 mm). Furthermore, transport and utilization were concentration-dependent processes. Inosine, proposed as the major energy substrate of the pig erythrocyte, at physiological concentrations is not as efficient as glucose in maintaining reduced glutathione levels under oxidative stress. Furthermore, newborn pig erythrocytes (fully permeable to glucose) possess hexokinase type II as the predominant glucose-phosphorylating activity. This fact and the information derived from the study of the regulatory characteristics of hexokinase III and from metabolic studies on intact pig erythrocytes permit the hypothesis that the presence of this peculiar hexokinase isozyme (type III) enables the adult pig erythrocyte to metabolize low but appreciable amounts of glucose.  相似文献   

7.
In order to investigate the mechanism of glucose repression of the N-acetylglucosamine metabolic enzymes in Candidaalbicans, an obligatory aerobic yeast, the activities of the following inducible enzymes were assayed: the N-acetylglucosamine uptake, N-acetylglucosamine kinase and glucosamine-6-phosphate deaminase. In the presence of glucose or other sugars e.g. succinate and glycerol, synthesis of these enzymes took place at a normal rate, suggesting that the hexose produces no catabolite repression in this organism. On the contrary, strong inhibition by glucose was observed on the activities of N-acetylglucosamine uptake and deaminase in N-acetylglucosamine-grown cells of Saccharomycescerevisiae, a facultative aerobe. From the results, it is concluded that “glucose effect” or catabolite repression is absent in Candidaalbicans, a pathogenic strain of yeast.  相似文献   

8.
1. Some metabolic effects of increased mechanical activity by the Langendorff-perfused rat heart have been characterized using 31P-NMR. Mechanical activity was increased by infusion of ouabain (0.9?7.0·10?5 M), the ionophore R02-2985 (1·10?5 M) or epinephrine (5·10?8 M). 2. Similar metabolic changes accompanied infusion of each of the positive inotropic agents into hearts perfused with buffer containing 11 mM glucose as the substrate. In each case phosphocreatine concentrations decreased. During the period of epinephrine infusion the phosphocreatine began to recover its original concentration, although there were no significant changes in mechanical activity. 3. Comparisons of the metabolic changes accompanying the positive inotropic and chronotropic effects of epinephrine were made between hearts perfused with either glucose (11 mM), acetate (5 mM) or lactate (5 mM). A time-dependent decrease in phosphocreatine concentrations also accompanied infusion of epinephrine into hearts perfused with lactate as the sole exogenous substrate, but no statistically significant metabolite changes were observed after identical epinephrine infusions with acetate as the substrate. 4. Calculation of the concentration of free ADP assuming equilibrium in the creatine phosphokinase reaction allows estimation of the cytosolic phosphate potential ([ATP][ADP][Pi]), which appears to be dependent on a number of factors, including the nature of the exogenous substrate and the level of mechanical activity. 5. Thus, we conclude that there is no general correlation between the phosphate potential and the mitochondrial respiratory rate in the perfused rat heart.  相似文献   

9.
Changes in neutral amino acid transport activity caused by addition of phytohaemagglutinin-P to quiescent peripheral pig lymphocytes have been evaluated by measurements of 14C-labelled neutral and analogue amino acids under conditions approaching initial entry rates. Utilizing methylaminoisobutyric acid, the best model substrate of System A, we confirmed our previous report (Borghetti, A.F., Kay, J.E. and Wheeler, K.P. (1979) Biochem. J. 182, 27–32) on the absence of this transport system in quiescent cells and its emergence following stimulation. Furthermore, we demonstrated the presence in quiescent cells of an Na+-dependent transport system for neutral amino acids that has been characterized as System ASC by several criteria including intolerance to methylaminoisobutyric acid, strict Na+-dependence, the property of transtimulation and specificity for pertinent substrates such as alanine, serine, cysteine and threonine. Analysis of the relationship between influx and substrate concentration revealed that two independent saturable components contribute to entry of alanine in quiescent cells: a low affinity (Km = ≈4 mM) and a high affinity (Km = ≈0.2 mM) component. The high affinity component could be inhibited in a competitive way by serine, cysteine and threonine, but methylaminoisobutyric acid did not change appreciably its constants. The enhanced activity of alanine transport through the ASC system observed in activated cells resulted from a large increase in the capacity (V) of the high affinity component without any substantial change in the apparent affinity constant (Km).  相似文献   

10.
Quantitative analysis of red cell pyridine nucleotides has been unreliable in the past because of technical problems in extracting them in the presence of hemoglobin. A simple alcoholic extraction procedure for analysis of pyridine nucleotides in red blood cells is described in this paper. Pyridine nucleotides extracted in the presence of hemoglobin in solution show recoveries of NADH, NAD, and NADP averaging over 70%, while recoveries of NADPH were about 60%. In order to show that these techniques could detect actual intracellular differences in nucleotides inside red cells, two experiments were performed in which the ratios of the nucleotides would be predictably altered. Intact cells incubated in the presence of methylene blue show a decrease in the NADPHNADP ratio, and intact cells incubated in the presence of hydrazine and lactate show an increase in the NADHNAD ratio. The changes in pyridine nucleotide ratios in these experiments are in the expected direction and were easily detected. Levels of pyridine nucleotides in red blood cells of normal human adults are also presented.  相似文献   

11.
Repair deficiency in Escherichia coli UV-sensitive mutator strain uvr502   总被引:8,自引:0,他引:8  
The effect of ultraviolet irradiation (UV) has been studied in Escherichiacoli mutator UV-sensitive mutant uvr502, its uvrA6 derivative and wild-type strain. The uvr502 mutant is about 5 times more UV-sensitive than the uvr+ isogenic strain, but 3 times less sensitive than the uvrA6 single mutant. Cells of the uvr502 mutant are unable to rejoin the fragments of parental DNA formed after UV as a result of incision. The double mutant uvrA6uvr502 as well as the single uvrA6 mutant irradiated with UV is unable to introduce breaks into parental DNA. The extent of postreplication repair is essentially normal in the uvr502 cells. There is no significant difference between the uvr+ and uvr502 cells in the rate and extent of UV-induced DNA degradation.  相似文献   

12.
When human red cells are treated with the mercurial sulfhydryl reagent, p-chloromercuribenzene sulfonate, osmotic water permeability is suppressed and only diffusional water permeability remains (Macey, R.I. and Farmer, R.E.L. (1970) Biochim. Biophys. Acta 211, 104–106). It has been suggested that the route for the remaining water permeation is by diffusion through the membrane lipids. However, after making allowance for the relative lipid area of the membrane, the water diffusion coefficient through lipid bilayers which contain cholesterol is too small by a factor of two or more. We have measured the permeability coefficient of normal human red cells by proton T1 NMR and obtained a value of 4.0 · 10?3 cm · s?1, in good agreement with published values. In order to study permeation-through red cell lipids we have perturbed extracted red cell lipids with the lipophilic anesthetic, halothane, and found that halothane increases water permeability. The same concentration of halothane has no effect on the water permeability of human red cells, after maximal pCMBS inhibition. In order to compare halothane mobility in extracted red cell membrane lipids with that in red cell ghost membranes, we have studied halothane quenching of N-phenyl-1-naphthylamine by equilibrium fluorescence and fluorescence lifetime methods. Since halothane mobility is similar in these two preparations, we have concluded that the primary route of water diffusion in pCMBS-treated red cells is not through membrane lipids, but rather through a membrane protein channel.  相似文献   

13.
We have compared densitometric tracings of whole cell, cytoplasmic and membrane polypeptide electrophoretic patterns in an attempt to distinguish atypical partitioning from intrinsic membrane polypeptide changes occurring as a result of reticulocyte enrichment, metabolic depletion, N-ethylmaleimide treatment and hereditary xerocytosis. We report that membrane alterations seen in a reticulocyte-enriched population of normal cells are present in the whole cells prior to membrane isolation. Some of the membrane alterations in metabolically depleted cells and all of those in N-ethylmaleimide-treated cells are traced to modifications in the partitioning of polypeptides between membranes and supernatant (cytoplasm) at hemolysis.The power of this approach in resolving the sources of apparent red cell membrane protein alterations is demonstrated in studies with hereditary xerocytes. Suggested altered partitioning of these cells described earlier (Sauberman, N., Fortier, N.L., Fairbanks, G., O'Connor, R.J. and Snyder, L.M. (1979) Biochim. Biophys. Acta 556, 292–313) is further documented and found to be unrelated to the younger cell population or slight metabolic depletion that occurs during the washing of xerocytes prior to hemolysis.  相似文献   

14.
FSH in vitro, but not LH, increased the O2 uptake of isolated granulosa cells from 23 day old rats previously treated with DES or with DES and FSH. Dose response studies showed that the cells were most sensitive to FSH when the cellular binding of FSH was highest. LH increased the O2 uptake of granulosa cells of untreated 30 day old rats. DES treatment inhibited the LH induced rise in O2 uptake when the rats were implanted with DES capsules unless FSH was injected to induce LH receptors. Addition of dbcAMP in vitro increased O2 uptake of granulosa cells from 30 day old rats at concentrations 10X lower than those required to stimulate O2 uptake in cells from 23 day old rats treated with DES alone.FSH in vitro increased lactate formation in the absence of added substrates but did not do so when glucose was added to the media. In contrast, LH greatly increased lactate formation with added glucose. Dose response studies showed that less than 0.6 ug/ml LH S21 was effective in increasing lactate above control levels. These data suggest that FSH affects aerobic pathways while LH affects anaerobic pathways in the process of the differentiation of granulosa cells toward luteal cells.It is well known that FSH and LH interact with their target cells in the ovary by binding to specific receptors and that FSH stimulates LH-receptor production (1). Receptor binding by either hormone activates adenylate cyclase (2) raising cyclic adenosine monosphosphate (cAMP) levels (3) and increasing protein kinase activity (4). Such changes probably trigger changes in the major metabolic pathways that support follicular development because cells of corpora lutea have glycogen (5) which is not present in follicular granulosa cells (6–9). Several studies suggest that FSH and LH may regulate metabolic processes in the ovary. LH increases lactate in whole prepuberal ovaries (10,11,12) and also increases the uptake of glucose (13). FSH increases oxygen uptake in chick ovaries (14), rat ovaries (15) and prairie dog ovaries (16). However, only one study has been done using isolated ovarian cells. Hamberger (17) has reported that FSH increased the oxygen uptake of thecal cells of immature rats while LH increased the oxygen uptake of granulosa cells. Since granulosa cells from immature rats are reported to have FSH receptors while theca cells have LH receptors the effects of these hormones appear unclear.The present studies were undertaken to more accurately characterize the actions of FSH, LH, and dibutyryl cAMP (dbcAMP) on the oxygen uptake of isolated granulosa cells and remaining tissues of immature ovaries and to determine the effects of FSH and LH on the production of lactate by granulosa cells.  相似文献   

15.
J A Sturman 《Life sciences》1976,18(8):879-886
The rates of decarboxylation of S-adenosylmethionine and synthesis of spermidine have been measured in extracts of liver, kidney and brain of the rat and guinea pig after intraperitoneal injection of MGBG, both before and after dialysis. The rate of decarboxylation of S-adenosylmethionine paralleled that of spermidine synthesis in all of the tissues investigated, even when spermidine synthesis was measured using preformed decarboxylated S-adenosylmethionine as substrate instead of S-adenosylmethionine itself. MGBG inhibited CO2 production and spermidine synthesis to a similar extent in extracts of liver and kidney of both the rat and the guinea pig. After dialysis, a similar increase in both CO2 production and spermidine synthesis was noted in these extracts. No effects on CO2 production or spermidine synthesis were noted on extracts of brain of the rat or guinea pig, either before or after dialysis. When MGBG was injected intracisternally, CO2 production and spermidine synthesis by extracts of brain were inhibited to the same extent, and after dialysis a similar increase in CO2 production and spermidine synthesis was observed. These results indicate that the effects of MGBG are essentially the same in brain as they are in liver and kidney, and the MGBG injected intraperitoneally does not pass into the brain.  相似文献   

16.
It was found that the newly-available compound, bis-(4-methylumbelliferyl) phosphate, could be used as a substrate for the pig platelet surface membrane-associated phosphodiesterase activity, usually assayed with bis-(p-nitrophenyl) phosphate. This enzyme activity is distinct from the phosphodiesterase activity towards 5′ -dTMP-p-nitrophenyl ester, which is probably associated with intracellular membrane structure in platelets. Consequently, the use of the 4-methylumbelliferyl derivative as substrate for the phosphodiesterase activity provides a sensitive, fluorimetric assay for this marker enzyme of the platelet surface membrane.  相似文献   

17.
It has been suggested that the human red cell anion transport protein, band 3, is the site not only of the cation leak induced in human red cells by treatment with the sulfhydryl reagent pCMBS (p-chloromercuribenzene sulfonate) but is also the site for the inhibition of water flux induced by the same reagent. Our experiments indicate that N-ethylmaleimide, a sulfhydryl reagent that does not inhibit water transport, also does not induce a cation leak. We have found that the profile of inhibition of water transport by mercurial sulfhydryl reagents is closely mirrored by the effect of these same reagents on the induction of the cation leak. In order to determine whether these effects are caused by band 3 we have reconstituted phosphatidylcholine vesicles containing only purified band 3. Control experiments indicate that these band 3 vesicles do not contain (Na+ + K+)-ATPase as measured by ATP dephosphorylation. pCMBS treatment caused a significant increase in the cation leak in this preparation, consistent with the view that the pCMBS-induced cation leak in whole red cells is mediated by band 3.  相似文献   

18.
4-Deoxy-D-erythro tetrose 4-phosphonate and 4,5 dideoxy D-erythro pentose 5-phosphonate, the phosphonic analogues of D-erythrose 4-phosphate, have been prepared by oxidation of the corresponding analogues of glucose 6-phosphate and tested as substrates of 3-deoxy-D-arabino heptulosonate 7-phosphate synthetase, transaldolase and transketolase. Kinetic parameters of the reaction with the phosphonate analogues and the natural substrate have been compared.  相似文献   

19.
The sugar composition of the growth medium influenced the NAD+NADH ratio, pyruvate and lactate production, and ATP levels in both normal and transformed fibroblast cell lines growing in tissue culture. Removal of glucose led to a rapid three- to fourfold rise in the NAD+NADH ratio, followed by a slower decline in the content of ATP. However, there was no change in the adenylate energy charge [(ATP + 12ADP)/(ATP + ADP + AMP)] over a 2-h period. The NAD+NADH ratio was restored to the original level within 10 s of glucose readdition. The NAD+NADHratios in cell lines growing on galactose were as high as for those incubated without sugars; growth on mannose or fructose produced intermediate ratios. There was an inverse relationship between the NAD+NADH ratio and pyruvate-lactate production for glucose, fructose and galactose. Thus, all cell lines had a high production of pyruvate and lactate but a low NAD+NADH ratio when grown on glucose. In contrast, when galactose served as the sugar source, acid production was low, while the ratio was high. All cell lines had comparable hexokinase activity, and glucose was the best substrate, mannose intermediate and fructose poorest. Hexokinase activity did not correlate with the relative degree of utilization of the sugars. These results suggest that the sugar composition of the growth medium affects the metabolic pattern of a cell line, including the NAD+NADH ratio, the ATP content and the production of pyruvate and lactate.  相似文献   

20.
The mutagenicity of metronidazole, a widely used chemotherapeutic agent, for Salmonella typhimurium was confirmed. Moreover using a mutant of of S. typhimurium unable to activate metronidazole to a genetically active metabolite, it is shown that this activation can be carried out by a microsomal preparation devived from rat liver. Heretofore it had been postulated that this metabolic event was catalyzed solely by enzymes present in protozoa and anaerobic bacteria. The present findings which indicate that mammalian enzymes can activate metronidazole to a genetically active intermediate may have a direct relevance to the carcinogenicity of this agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号