首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golgi localization of Syne-1   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

2.
Spectrin repeat (SR)-containing proteins are important for regulation of integrity of biomembranes, not only the plasma membrane but also those of intracellular organelles, such as the Golgi, nucleus, endo/lysosomes, and synaptic vesicles. We identified a novel SR-containing protein, named GSRP-56 (Golgi-localized SR-containing protein-56), by a yeast two-hybrid method, using a member of the transient receptor potential channel family, TRPV2, as bait. GSRP-56 is an isoform derived from a giant SR-containing protein, Syne-1 (synaptic nuclear envelope protein-1, also referred to as Nesprin-1 or Enaptin), predicted to be produced by alternative splicing. Immunological analysis demonstrated that this isoform is a 56-kDa protein, which is localized predominantly in the Golgi apparatus in cardiomyocytes and C2C12 myoblasts/myotubes, and we found that two SR domains were required both for Golgi targeting and for interaction with TRPV2. Interestingly, overexpression of GSRP-56 resulted in a morphological change in the Golgi structure, characterized by its enlargement of cis-Golgi marker antibody-staining area, which would result partly from fragmentation of Golgi membranes. Our findings indicate that GSRP-56 is a novel, particularly small Golgi-localized member of the spectrin family, which possibly play a role in maintenance of the Golgi structure.  相似文献   

3.
4.
Proper nuclear positioning is important to cell function in many biological processes during animal development. In certain cells, the KASH-domain-containing proteins have been shown to be associated with the nuclear envelope, and to be involved in both nuclear anchorage and migration. We investigated the mechanism and function of nuclear anchorage in skeletal muscle cells by generating mice with single and double-disruption of the KASH-domain-containing genes Syne1 (also known as Syne-1) and Syne2 (also known as Syne-2). We showed that the deletion of the KASH domain of Syne-1 abolished the formation of clusters of synaptic nuclei and disrupted the organization of non-synaptic nuclei in skeletal muscle. Further analysis indicated that the loss of synaptic nuclei in Syne-1 KASH-knockout mice significantly affected the innervation sites and caused longer motor nerve branches. Although disruption of neither Syne-1 nor Syne-2 affected viability or fertility, Syne-1; Syne-2 double-knockout mice died of respiratory failure within 20 minutes of birth. These results suggest that the KASH-domain-containing proteins Syne-1 and Syne-2 play crucial roles in anchoring both synaptic and non-synaptic myonuclei that are important for proper motor neuron innervation and respiration.  相似文献   

5.
Nesprin-1 and nesprin-2 (also known as Syne-1 and Syne-2,) are large ( approximately 3300-residue) vertebrate proteins associated with emerin and lamin A at the nuclear envelope of muscle cells and other cell types. We show that the previously described nesprins are short isoforms of giant proteins comprising an actin-binding amino-terminus connected to a carboxy-terminal klarsicht-related transmembrane domain by a massive ( approximately 6000-8000 amino acid) spectrin-like rod domain, making full-length nesprin-1, at one megadalton, the largest non-titin protein hitherto described in humans. We find that MSP-300, a 7000-residue Drosophila melanogaster protein whose disruption results in defects of muscle development, corresponds to the N-terminal two-thirds of the Drosophila nesprin ortholog. A nesprin-like protein is also encoded by the nematode genome. Moreover, we demonstrate that the larger isoforms of nesprin-1, like MSP-300, are localized to the sarcomeric Z-line of both skeletal and cardiac muscle. The recognition that a characteristic muscle-specific mutant phenotype in the fly results from a disruption of its nesprin ortholog reinforces the candidacy of the human proteins for involvement in genetic diseases of skeletal and cardiac muscle.  相似文献   

6.
We have recently reported the identification and characterization of Sad1/UNC84 (SUN) domain proteins in various plant species. In animals and yeasts, SUN domain proteins are localized at the inner nuclear membrane and form a bridge across the nuclear envelope (NE) by interacting with outer nuclear membrane-localized Klarsicht/Anc-1/Syne-1 homology (KASH) domain proteins. This bridge physically connects cytoskeletal elements with chromatin and nucleoskeletal components. These multiprotein complexes are essential for various cellular and nuclear processes. The identification of SUN domain proteins provides the first evidence of putative NE bridging complexes in plants. Here we speculate on the composition and functions of these in regards to our current understanding of plant SUN domain proteins.Key words: SUN domain protein, LINC complex, plant nuclear envelope, cytoskeleton, KASH domain proteins, Arabidopsis  相似文献   

7.
The spectrin-actin junction of erythrocyte membrane skeletons   总被引:30,自引:0,他引:30  
High-resolution electron microscopy of erythrocyte membrane skeletons has provided striking images of a regular lattice-like organization with five or six spectrin molecules attached to short actin filaments to form a sheet of five- and six-sided polygons. Visualization of the membrane skeletons has focused attention on the (spectrin)5,6-actin oligomers, which form the vertices of the polygons, as basic structural units of the lattice. Membrane skeletons and isolated junctional complexes contain four proteins that are stable components of this structure in the following ratios: 1 mol of spectrin dimer, 2-3 mol of actin, 1 mol of protein 4.1 and 0.1-0.5 mol of protein 4.9 (numbers refer to mobility on SDS gels). Additional proteins have been identified that are candidates to interact with the junction, based on in vitro assays, although they have not yet been localized to this structure and include: tropomyosin, tropomyosin-binding protein and adducin. The spectrin-actin complex with its associated proteins has a key structural role in mediating cross-linking of spectrin into the network of the membrane skeleton, and is a potential site for regulation of membrane properties. The purpose of this article is to review properties of known and potential constituent proteins of the spectrin-actin junction, regulation of their interactions, the role of junction proteins in erythrocyte membrane dysfunction, and to consider aspects of assembly of the junctions.  相似文献   

8.
The membrane skeleton forms a scaffold on the cytoplasmic side of the plasma membrane. The erythrocyte membrane represents an archetype of such structural organization. It has been documented that a similar membrane skeleton also exits in the Golgi complex. It has been previously shown that βII spectrin and ankyrin G are localized at the lateral membrane of human bronchial epithelial cells. Here we show that protein 4.1N is also located at the lateral membrane where it associates E-cadherin, β-catenin and βII spectrin. Importantly, depletion of 4.1N by RNAi in human bronchial epithelial cells resulted in decreased height of lateral membrane, which was reversed following re-expression of mouse 4.1N. Furthermore, although the initial phase of lateral membrane biogenesis proceeded normally in 4.1N-depleted cells, the final height of the lateral membrane of 4.1N-depleted cells was shorter compared to that of control cells. Our findings together with previous findings imply that 4.1N, βII spectrin and ankyrin G are structural components of the lateral membrane skeleton and that this skeleton plays an essential role in the assembly of a fully functional lateral membrane.  相似文献   

9.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

10.
Protein kinase C (PKC) represents a family of serin/threonine kinases, playing a central role in the regulation of cell growth, differentiation and transformation. These enzymes differ in their primary structure, biochemical properties, tissue distribution and subcellular localization. The specific cellular functions of PKC isoforms are largely controlled by their localization. PKCeta, a member of the novel subfamily, is expressed predominantly in epithelial tissues. However, not much is known with respect to its mechanism of activation and regulation. Our recent studies suggest its role in cell cycle control. Here we show that PKCeta is localized at the Golgi apparatus, ER and the nuclear envelope. Furthermore, using GFP-fusion proteins of the different functional domains of PKCeta we deciphered the specific structural domains of the protein responsible for its apparent localization. We show that the cysteine-rich repeat C1b is responsible for its Golgi localization, while for its presence at the ER/nuclear envelope the pseudosubstrate containing fragment coupled to the C1 domain is required. In response to short-term activation by PMA we show translocation of PKCeta to the plasma membrane and the nuclear envelope. We demonstrate that the C1b is sufficient for its translocation to the plasma membrane. Interestingly, accumulation of PKCeta at the nuclear envelope also occurred in response to serum-starvation. It should be noted that interaction of PKCeta with the cyclin E/Cdk2 complex at the perinuclear region was recently reported by us in response to serum-starvation. Thus, our studies demonstrate translocation of PKCeta to the nuclear envelope, and suggest that the spatial regulation of PKCeta could be important for its cellular functions including effects on cell cycle control and involvement in tumor promotion.  相似文献   

11.
Envelopment of herpes simplex virus type-1 (HSV-1) was investigated in relation to membrane differentiation in dissociated anterior pituitary cells. The number of cells stained positively with anti-HSV-1 serum was increased from 16 h to 31 h post infection. During this period, electron microscopy revealed that a number of nucleocapsids (unenveloped particles) were accumulated in the Golgi area, where they frequently became surrounded by a double membrane of short Golgi cisternae or by one with a Golgi associated endoplasmic reticulum lysosome (GERL)-like structure. The inner membrane of the cisterna surrounding the nucleocapsids showed regional specialization which was characterized by increased thickness and electron opacity. Acid phosphatase activity, a marker for GERL or trans Golgi cisternae, appeared in the cytoplasmic short cisternae surrounding the nucleocapsids, whereas glucose-6-phosphatase activity, a marker for the nuclear envelope or for endoplasmic reticulum, was not demonstrated in such cisternae. Monoclonal antibody against glycoprotein gD revealed that gD was localized in the trans Golgi membrane as well as in the envelope of the virion. The antibody-binding sites were highly concentrated in the area where Golgi membranes showed increased opacity. Furthermore, nucleocapsids were surrounded exclusively by gD-positive cisternal (Golgi or Golgi-derived) membranes. Thus, our results indicate that the envelope of HSV is derived from trans Golgi cisterna (GERL), and that some viral components, including gD, destined for the envelope may be assembled initially in the Golgi membrane, which is thereby transformed into the envelope of the virus.  相似文献   

12.
13.
14.
The presence and the distribution of proteins of the membrane skeleton in differentiating germ cells of the rat has been investigated. Immunofluorescence and immunoblotting analysis, performed using monoclonal and polyclonal antibodies to human erythroid alpha-spectrin and protein 4.1 and to brain spectrin (fodrin), demonstrated the presence of analogues of spectrin and fodrin in spermatocytes and round spermatids and of protein 4.1-like molecules in spermatocytes, spermatids and spermatozoa. Spectrin and fodrin showed molecular weights comparable to those of their analogues in erythrocytes but a distinct intracellular distribution. Fodrin was localized along the plasma membrane while spectrin appeared associated with the regions of the Golgi apparatus and of the developing acrosome. Antibodies to protein 4.1 recognized molecules with a molecular weight not comparable with that in erythrocytes, and their presence in spermatozoa was confined to specific regions of the head and of the tail.  相似文献   

15.
Muscle A-kinase anchoring protein (mAKAP) is a scaffold protein found principally at the nuclear envelope of striated myocytes. mAKAP maintains a complex consisting of multiple signal transduction molecules including the cAMP-dependent protein kinase A, the ryanodine receptor calcium release channel, phosphodiesterase type 4D3, and protein phosphatase 2A. By an unknown mechanism, a domain containing spectrin repeats is responsible for targeting mAKAP to the nuclear envelope. We now demonstrate that the integral membrane protein nesprin-1alpha serves as a receptor for mAKAP on the nuclear envelope in cardiac myocytes. Nesprin-1alpha is inserted into the nuclear envelope by a conserved, C-terminal, klarsicht-related transmembrane domain and forms homodimers by the binding of an amino-terminal spectrin repeat domain. Through the direct binding of the nesprin-1alpha amino-terminal dimerization domain to the third mAKAP spectrin repeat, nesprin-1alpha targets mAKAP to the nuclear envelope. In turn, overexpression of these spectrin repeat domains in myocytes can displace mAKAP from nesprin-1alpha.  相似文献   

16.
R Gilbert  K Ghosh  L Rasile    H P Ghosh 《Journal of virology》1994,68(4):2272-2285
We have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum.  相似文献   

17.

Background  

The nuclear lamina is a protein meshwork lining the inner nuclear membrane, which contains a polymer of nuclear lamins associated with transmembrane proteins of the inner nuclear membrane. The lamina is involved in nuclear structure, gene expression, and association of the cytoplasmic cytoskeleton with the nucleus. We previously identified a group of 67 novel putative nuclear envelope transmembrane proteins (NETs) in a large-scale proteomics analysis. Because mutations in lamina proteins have been linked to several human diseases affecting skeletal muscle, we examined NET expression during differentiation of C2C12 myoblasts. Our goal was to identify new nuclear envelope and lamina components whose expression is coordinated with muscle differentiation.  相似文献   

18.
Enaptin belongs to a family of recently identified giant proteins that associate with the F-actin cytoskeleton as well as the nuclear membrane. It is composed of an N-terminal alpha-actinin type actin-binding domain (ABD) followed by a long coiled coil rod and a transmembrane domain at the C-terminus. The ABD binds to F-actin in vivo and in vitro and leads to bundle formation. The human Enaptin gene spreads over 515 kb and gives rise to several splicing isoforms (Nesprin-1, Myne-1, Syne-1, CPG2). The longest assembled cDNA encompasses 27,669 bp and predicts a 1014 kDa protein. Antibodies against the ABD of Enaptin localise the protein at F-actin-rich structures throughout the cell and in focal contacts as well as at the nuclear envelope. In COS7 cells, the protein is also present within the nuclear compartment. With the discovery of the actin-binding properties of Enaptin and the highly homologous Nuance, we define a family of proteins that integrate the cytoskeleton with the nucleoskeleton.  相似文献   

19.
《The Journal of cell biology》1990,111(5):1849-1858
Spectrins are a major component of the membrane skeleton in many cell types where they are thought to contribute to cell form and membrane organization. Diversity among spectrin isoforms, especially their beta subunits, is associated with diversity in cell shape and membrane architecture. Here we describe a spectrin isoform from Drosophila that consists of a conventional alpha spectrin subunit complexed with a novel high molecular weight beta subunit (430 kD) that we term beta H. The native alpha beta H molecule binds actin filaments with high affinity and has a typical spectrin morphology except that it is longer than most other spectrin isoforms and includes two knoblike structures that are attributed to a unique domain of the beta H subunit. Beta H is encoded by a different gene than the previously described Drosophila beta-spectrin subunit but shows sequence similarity to beta-spectrin as well as vertebrate dystrophin, a component of the membrane skeleton in muscle. By size and sequence similarity, dystrophin is more similar to this newly described beta-spectrin isoform (beta H) than to other members of the spectrin gene family such as alpha-spectrin and alpha- actinin.  相似文献   

20.
The role of the transmembrane and the cytoplasmic regions of viral glycoproteins namely, the envelope glycoprotein gD of herpes simplex virus and the integral membrane glycoprotein E3-11.6 K of the nonenveloped adenovirus that are localized in the nuclear envelope has been studied. Chimeras of the cell surface glycoprotein G of vesicular stomatitis virus containing the transmembrane and (or) the cytoplasmic-tail domains of either herpes simplex virus gD or adenovirus E3-11.6 K protein were examined for their intracellular transport and localization. The results show that hybrids containing the membrane anchoring and (or) the cytoplasmic tail domains of either herpes simplex virus gD or adenovirus E3-11.6 K glycoprotein were localized in the nuclear envelope as well as in the endoplasmic reticulum and the Golgi complex. These results suggest that the membrane anchoring and the cytoplasmic domains of herpes simplex virus glycoproteins gD, as well as the adenovirus integral membrane protein E3-11.6 K, were necessary for localization in the nuclear envelope and could influence retention in the endoplasmic reticulum and the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号