首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In complex with ATP, but not ADP, DnaA protein multimers unwind a specific region of duplex DNA within the chromosomal replication origin, oriC, triggering a series of reactions that result in initiation of DNA replication. Following replication initiation, ATP hydrolysis, which is coupled to DNA replication, results in the generation of initiation-incompetent ADP-DnaA. Suppression of overinitiation of replication requires that ADP-DnaA complexes be stably maintained until the next round of replication. Thus, the functional and structural requirements that ensure stable nucleotide binding to DnaA are crucial for proper regulation of replication. Here, we demonstrate that Glu143 of DnaA, located within the AAA+ box II N-linker motif, is a key residue involved in stable nucleotide binding. A Glu143 substitution variant of DnaA (DnaA E143A) bound to ADP on ice with an affinity similar to wild-type DnaA, but the resultant ADP-DnaA E143A complex was more labile at 37 °C than wild-type ADP-DnaA complexes. Consistent with this, conversion of ADP-DnaA E143A to ATP-DnaA E143A was stimulated at 37°C in the presence of ATP, which also stimulated replication of a minichromosome in an in vitro reconstitution reaction. Expression of DnaA E143A in vivo inhibited cell growth in an oriC-dependent manner, suggesting that DnaA E143A caused over-initiation of replication, consistent with the in vitro results. Glu is a highly conserved residue at the corresponding position of γ-proteobacterial DnaA orthologs. Our finding of the novel role for the DnaA N-linker region may represent a conserved function of this motif among those DnaA orthologs.  相似文献   

2.
3.
In Escherichia coli, regulatory inactivation of the replication initiator DnaA occurs after initiation as a result of hydrolysis of bound ATP to ADP, but it has been unknown how DnaA is controlled to coordinate cell growth and chromosomal replication in Gram-positive bacteria such as Staphylococcus aureus. This study examined the roles of ATP binding and its hydrolysis in the regulation of the S. aureus DnaA activity. In vitro, S. aureus DnaA melted S. aureus oriC in the presence of ATP but not ADP by a mechanism independent of ATP hydrolysis. Unlike E. coli DnaA, binding of ADP to S. aureus DnaA was unstable. As a result, at physiological concentrations of ATP, ADP bound to S. aureus DnaA was rapidly exchanged for ATP, thereby regenerating the ability of DnaA to form the open complex in vitro. Therefore, we examined whether formation of ADP-DnaA participates in suppression of replication initiation in vivo. Induction of the R318H mutant of the AAA+ sensor 2 protein, which has decreased intrinsic ATPase activity, caused over-initiation of chromosome replication in S. aureus, suggesting that formation of ADP-DnaA suppresses the initiation step in S. aureus. Together with the biochemical features of S. aureus DnaA, the weak ability to convert ATP-DnaA into ADP-DnaA and the instability of ADP-DnaA, these results suggest that there may be unidentified system(s) for reducing the cellular ratio of ATP-DnaA to ADP-DnaA in S. aureus and thereby delaying the re-initiation of DNA replication.  相似文献   

4.
Escherichia coli DnaA protein forms a multimeric complex at the chromosomal origin of replication (oriC), where a series of initiation reactions occurs and DNA polymerase III holoenzyme is loaded. The ATP-bound form of DnaA, which is active for initiation, is converted to the inactive ADP-bound form through interaction with the sliding clamp, the beta subunit of DNA polymerase III holoenzyme loaded on DNA. This negative regulation, termed RIDA, is required for preventing untimely initiations. Here, we asked if RIDA is functionally related to another negative regulation, DnaA titration by the datA site. The datA site can harbor hundreds of DnaA molecules, and is also required for preventing untimely initiations. We reveal here that, in growing cells of the datA(+) and datA-deleted strains, the ATP-DnaA levels were both maintained in a limited range of about 20-30% of the total ATP- plus ADP-DnaA molecules. This indicates that RIDA functions in the absence of datA. In synchronized datA-deleted cells, the ATP-DnaA level fluctuated in a manner similar to that observed in datA(+) cells. This suggests that RIDA operates independent from DnaA titration to datA. We suggest that these two mechanisms may play complementary roles during the cell cycle to prevent untimely initiations and thus ensure the scheduled initiation.  相似文献   

5.
In Escherichia coli, the replication initiator DnaA oscillates between an ATP- and an ADP-bound state in a cell cycle-dependent manner, supporting regulation for chromosome replication. ATP–DnaA cooperatively assembles on the replication origin using clusters of low-affinity DnaA-binding sites. After initiation, DnaA-bound ATP is hydrolyzed, producing initiation-inactive ADP–DnaA. For the next round of initiation, ADP–DnaA binds to the chromosomal locus DARS2, which promotes the release of ADP, yielding the apo-DnaA to regain the initiation activity through ATP binding. This DnaA reactivation by DARS2 depends on site-specific binding of IHF (integration host factor) and Fis proteins and IHF binding to DARS2 occurs specifically during pre-initiation. Here, we reveal that Fis binds to an essential region in DARS2 specifically during pre-initiation. Further analyses demonstrate that ATP–DnaA, but not ADP–DnaA, oligomerizes on a cluster of low-affinity DnaA-binding sites overlapping the Fis-binding region, which competitively inhibits Fis binding and hence the DARS2 activity. DiaA (DnaA initiator-associating protein) stimulating ATP–DnaA assembly enhances the dissociation of Fis. These observations lead to a negative feedback model where the activity of DARS2 is repressed around the time of initiation by the elevated ATP–DnaA level and is stimulated following initiation when the ATP–DnaA level is reduced.  相似文献   

6.
7.
In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase.  相似文献   

8.
The ATP-bound but not the ADP-bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP-DnaA is repressed to only approximately 20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP-DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP-DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP-DnaA from ADP-DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.  相似文献   

9.
The ATP-bound DnaA protein opens duplex DNA at the Escherichia coli origin of replication, leading to a series of initiation reactions in vitro. When loaded on DNA, the DNA polymerase III sliding clamp stimulates hydrolysis of DnaA-bound ATP in the presence of the IdaB/Hda protein, thereby yielding ADP-DnaA, which is inactive for initiation in vitro. This negative feedback regulation of DnaA activity is proposed to play a crucial role in the replication cycle. We here report that the mutant protein DnaA R334A is inert to hydrolysis of bound ATP, although its affinities for ATP and ADP remain unaffected. The ATP-bound DnaA R334A protein, but not the ADP form, initiates minichromosomal replication in vitro at a level similar to that seen for wild-type DnaA. When expressed at moderate levels in vivo, DnaA R334A is predominantly in the ATP-bound form, unlike the wild-type and DnaA E204Q proteins, which in vitro hydrolyze ATP in a sliding clamp- and IdaB/Hda-dependent manner. Furthermore, DnaA R334A, but not the wild-type or the DnaA E204Q proteins, promotes overinitiation of chromosomal replication. These in vivo data support a crucial role for bound nucleotides in regulating the activity of DnaA during replication. Based on a homology modeling analysis, we suggest that the Arg-334 residue closely interacts with bound nucleotides.  相似文献   

10.
The origin recognition complex (ORC), a possible initiator of chromosomal DNA replication in eukaryotes, binds to ATP through its subunits Orc1p and Orc5p. Orc1p possesses ATPase activity. As for DnaA, the Escherichia coli initiator, the ATP-DnaA complex is active but the ADP-DnaA complex is inactive for DNA replication and, therefore, the ATPase activity of DnaA inactivates the ATP-DnaA complex to suppress the re-initiation of chromosomal DNA replication. We investigated ADP-binding to ORC by a filter-binding assay. The K(d) values for ADP-binding to wild-type ORC and to ORC-1A (ORC containing Orc1p with a defective Walker A motif) were less than 10nM, showing that Orc5p can bind to ADP with a high affinity, similar to ATP. ORC-5A (ORC containing Orc5p with a defective Walker A motif) did not bind to ADP, suggesting that the ADP-Orc1p complex is too unstable to be detected by the filter-binding assay. ADP dissociated more rapidly than ATP from wild-type ORC and ORC-1A. Origin DNA fragments did not stimulate ADP-binding to any type of ORC. In the presence of ADP, ORC could not bind to origin DNA in a sequence-specific manner. Thus, in eukaryotes, the ADP-ORC complex may be unable to initiate chromosomal DNA replication, and in this it resembles the ADP-DnaA complex in prokaryotes. However, overall control may be different. In eukaryotes, the ADP-ORC complex is unstable, suggesting that the ADP-ORC complex might rapidly become an ATP-ORC complex; whereas in prokaryotes, ADP remains bound to DnaA, keeping DnaA inactive, and preventing re-initiation for some periods.  相似文献   

11.
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.  相似文献   

12.
Initiation of chromosomal replication and its cell cycle-coordinated regulation bear crucial and fundamental mechanisms in most cellular organisms. Escherichia coli DnaA protein forms a homomultimeric complex with the replication origin (oriC). ATP-DnaA multimers unwind the duplex within the oriC unwinding element (DUE). In this study, structural analyses suggested that several residues exposed in the central pore of the putative structure of DnaA multimers could be important for unwinding. Using mutation analyses, we found that, of these candidate residues, DnaA Val-211 and Arg-245 are prerequisites for initiation in vivo and in vitro. Whereas DnaA V211A and R245A proteins retained normal affinities for ATP/ADP and DNA and activity for the ATP-specific conformational change of the initiation complex in vitro, oriC complexes of these mutant proteins were inactive in DUE unwinding and in binding to the single-stranded DUE. Unlike oriC complexes including ADP-DnaA or the mutant DnaA, ATP-DnaA-oriC complexes specifically bound the upper strand of single-stranded DUE. Specific T-rich sequences within the strand were required for binding. The corresponding conserved residues of the DnaA ortholog in Thermotoga maritima, an ancient eubacterium, were also required for DUE unwinding, consistent with the idea that the mechanism and regulation for DUE unwinding can be evolutionarily conserved. These findings provide novel insights into mechanisms for pore-mediated origin unwinding, ATP/ADP-dependent regulation, and helicase loading of the initiation complex.  相似文献   

13.
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.  相似文献   

14.
ATP- and ADP-dnaA protein, a molecular switch in gene regulation.   总被引:11,自引:0,他引:11       下载免费PDF全文
C Speck  C Weigel    W Messer 《The EMBO journal》1999,18(21):6169-6176
  相似文献   

15.
P Hughes  A Landoulsi  M Kohiyama 《Cell》1988,55(2):343-350
DnaA protein interacts with cAMP with a KD of 1 microM. This interaction stimulates DnaA protein binding to the chromosome replication origin (oriC) and the mioC promoter region, protects DnaA protein from thermal inactivation, releases ADP but not ATP bound to DnaA protein, and restores normal DNA replication activity and ATPase activity in inactive ADP-DnaA protein preparations. A model is proposed in which cellular cAMP levels govern the replication activity of DnaA protein by promoting the recycling of the inactive ADP-DnaA protein form into the active ATP form.  相似文献   

16.
Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.  相似文献   

17.
DnaA protein (the initiator protein) binds and clusters at the four DnaA boxes of the Escherichia coli chromosomal origin (oriC) to promote the strand opening for DNA replication. DnaA protein activity depends on the tight binding of ATP; the ADP form of DnaA protein, generated by hydrolysis of the bound ATP, is inactive. Rejuvenation of ADP-DnaA protein, by replacement with ATP, is catalyzed by acidic phospholipids in a highly fluid bilayer. We find that interaction of DnaA protein with oriC DNA is needed to stabilize DnaA protein during this rejuvenation process. Whereas DnaA protein bound to oriC DNA responds to phospholipids, free DnaA protein is inactivated by phospholipids and then fails to bind oriC. Furthermore, oriC DNA facilitates the high affinity binding of ATP to DnaA protein during treatment with phospholipids. A significant portion of the DnaA protein associated with oriC DNA can be replaced by the ADP form of the protein, suggesting that all of the DnaA protein bound to oriC DNA need not be rejuvenated between rounds of replication.  相似文献   

18.
DNA replication is a fundamental biological process that is tightly regulated in all cells. In bacteria, DnaA controls when and where replication begins by building a step‐wise complex that loads the replicative helicase onto chromosomal DNA. In many low‐GC Gram‐positive species, DnaA recruits the DnaD and DnaB proteins to function as adaptors to assist in helicase loading. How DnaA, its adaptors and the helicase form a complex at the origin is unclear. We addressed this question using the bacterial two‐hybrid assay to determine how the initiation proteins from Bacillus subtilis interact with each other. We show that cryptic interaction sites play a key role in this process and we map these regions for the entire pathway. In addition, we found that the SirA regulator that blocks initiation in sporulating cells binds to a surface on DnaA that overlaps with DnaD. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this surface. Therefore, our study has unveiled key protein interactions essential for initiation and our approach is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.  相似文献   

19.
20.
The initiator protein DnaA has several unique DNA-binding features. It binds with high affinity as a monomer to the nonamer DnaA box. In the ATP form, DnaA binds cooperatively to the low-affinity ATP-DnaA boxes, and to single-stranded DNA in the 13mer region of the origin. We have carried out an extensive mutational analysis of the DNA-binding domain of the Escherichia coli DnaA protein using mutagenic PCR. We analyzed mutants exhibiting more or less partial activity by selecting for complementation of a dnaA(Ts) mutant strain at different expression levels of the new mutant proteins. The selection gave rise to 30 single amino acid substitutions and, including double substitutions, more than 100 mutants functional in initiation of chromosome replication were characterized. The analysis indicated that all regions of the DNA-binding domain are involved in DNA binding, but the most important amino acid residues are located between positions 30 and 80 of the 94 residue domain. Residues where substitutions with non-closely related amino acids have very little effect on protein function are located primarily on the periphery of the 3D structure. By comparison of the effect of substitutions on the activity for initiation of replication with the activity for repression of the mioC promoter, we identified residues that might be involved specifically in the cooperative interaction with ATP-DnaA boxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号