首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress. In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleotide repeats, which in a number of species, including humans, exert subtle and quantitative consequences for protein function, morphological and behavioral traits, and disease. We report that impairment of Hsp90 in human cells induces contractions of CAG repeat tracks by tenfold. Inhibition of the recombinase Rad51, a downstream target of Hsp90, induces a comparable increase in repeat instability, suggesting that Hsp90-enabled homologous recombination normally functions to stabilize CAG repeat tracts. By contrast, Hsp90 inhibition does not increase the rate of gene-inactivating point mutations. The capacity of Hsp90 to modulate repeat-tract lengths suggests that the chaperone, in addition to exposing cryptic variation, might facilitate the expression of new phenotypes through induction of novel genetic variation.  相似文献   

3.
The evolution of drug resistance in microbial pathogens provides a paradigm for investigating evolutionary dynamics with important consequences for human health. Candida albicans, the leading fungal pathogen of humans, rapidly evolves resistance to two major antifungal classes, the triazoles and echinocandins. In contrast, resistance to the third major antifungal used in the clinic, amphotericin B (AmB), remains extremely rare despite 50 years of use as monotherapy. We sought to understand this long-standing evolutionary puzzle. We used whole genome sequencing of rare AmB-resistant clinical isolates as well as laboratory-evolved strains to identify and investigate mutations that confer AmB resistance in vitro. Resistance to AmB came at a great cost. Mutations that conferred resistance simultaneously created diverse stresses that required high levels of the molecular chaperone Hsp90 for survival, even in the absence of AmB. This requirement stemmed from severe internal stresses caused by the mutations, which drastically diminished tolerance to external stresses from the host. AmB-resistant mutants were hypersensitive to oxidative stress, febrile temperatures, and killing by neutrophils and also had defects in filamentation and tissue invasion. These strains were avirulent in a mouse infection model. Thus, the costs of evolving resistance to AmB limit the emergence of this phenotype in the clinic. Our work provides a vivid example of the ways in which conflicting selective pressures shape evolutionary trajectories and illustrates another mechanism by which the Hsp90 buffer potentiates the emergence of new phenotypes. Developing antibiotics that deliberately create such evolutionary constraints might offer a strategy for limiting the rapid emergence of drug resistance.  相似文献   

4.
The molecular chaperone Hsp90 orchestrates regulatory circuitry governing fungal morphogenesis, biofilm development, drug resistance, and virulence. Hsp90 functions in concert with co-chaperones to regulate stability and activation of client proteins, many of which are signal transducers. Here, we characterize the first Hsp90 co-chaperone in the leading human fungal pathogen, Candida albicans. We demonstrate that Sgt1 physically interacts with Hsp90, and that it governs C. albicans morphogenesis and drug resistance. Genetic depletion of Sgt1 phenocopies depletion of Hsp90, inducing yeast to filament morphogenesis and invasive growth. Sgt1 governs these traits by bridging two morphogenetic regulators: Hsp90 and the adenylyl cyclase of the cAMP-PKA signaling cascade, Cyr1. Sgt1 physically interacts with Cyr1, and depletion of either Sgt1 or Hsp90 activates cAMP-PKA signaling, revealing the elusive link between Hsp90 and the PKA signaling cascade. Sgt1 also mediates tolerance and resistance to the two most widely deployed classes of antifungal drugs, azoles and echinocandins. Depletion of Sgt1 abrogates basal tolerance and acquired resistance to azoles, which target the cell membrane. Depletion of Sgt1 also abrogates tolerance and resistance to echinocandins, which target the cell wall, and renders echinocandins fungicidal. Though Sgt1 and Hsp90 have a conserved impact on drug resistance, the underlying mechanisms are distinct. Depletion of Hsp90 destabilizes the client protein calcineurin, thereby blocking crucial responses to drug-induced stress; in contrast, depletion of Sgt1 does not destabilize calcineurin, but blocks calcineurin activation in response to drug-induced stress. Sgt1 influences not only morphogenesis and drug resistance, but also virulence, as genetic depletion of C. albicans Sgt1 leads to reduced kidney fungal burden in a murine model of systemic infection. Thus, our characterization of the first Hsp90 co-chaperone in a fungal pathogen establishes C. albicans Sgt1 as a global regulator of morphogenesis and drug resistance, providing a new target for treatment of life-threatening fungal infections.  相似文献   

5.
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections.  相似文献   

6.
The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential.  相似文献   

7.
In all species studied to date, the function of heat shock protein 90 (Hsp90), a ubiquitous and evolutionarily conserved molecular chaperone, is inhibited selectively by the natural product drugs geldanamycin (GA) and radicicol. Crystal structures of the N-terminal region of yeast and human Hsp90 have revealed that these compounds interact with the chaperone in a Bergerat-type adenine nucleotide-binding fold shared throughout the gyrase, Hsp90, histidine kinase mutL (GHKL) superfamily of adenosine triphosphatases. To better understand the consequences of disrupting Hsp90 function in a genetically tractable multicellular organism, we exposed the soil-dwelling nematode Caenorhabditis elegans to GA under a variety of conditions designed to optimize drug uptake. Mutations in the gene encoding C elegans Hsp90 affect larval viability, dauer development, fertility, and life span. However, exposure of worms to GA produced no discernable phenotypes, although the amino acid sequence of worm Hsp90 is 85% homologous to that of human Hsp90. Consistent with this observation, we found that solid phase-immobilized GA failed to bind worm Hsp90 from worm protein extracts or when translated in a rabbit reticulocyte lysate system. Further, affinity precipitation studies using chimeric worm-vertebrate fusion proteins or worm C-terminal truncations expressed in reticulocyte lysate revealed that the conserved nucleotide-binding fold of worm Hsp90 exhibits the novel ability to bind adenosine triphosphate but not GA. Despite its unusual GA resistance, worm Hsp90 appeared fully functional when expressed in a vertebrate background. It heterodimerized with its vertebrate counterpart and showed no evidence of compromising its essential cellular functions. Heterologous expression of worm Hsp90 in tumor cells, however, did not render them GA resistant. These findings provide new insights into the nature of unusual N-terminal nucleotide-binding fold of Hsp90 and suggest that target-related drug resistance is unlikely to emerge in patients receiving GA-like chemotherapeutic agents.  相似文献   

8.
Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90''s role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90''s role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely new role for Hsp90 in mediating resistance to echinocandins, and demonstrate that targeting Hsp90 provides a promising therapeutic strategy for the treatment of life-threatening fungal disease.  相似文献   

9.
10.
Acquired multidrug resistance of cancer cells challenges the chemotherapeutic interventions. To understand the role of molecular chaperone, Hsp90 in drug adapted tumor cells, we have used in vitro drug adapted epidermoid tumor cells as a model system. We found that chemotherapeutic drug adaptation of tumor cells is mediated by induced activities of both Hsp90 and P-glycoprotein (P-gp). Although the high-affinity conformation of Hsp90 has correlated with the enhanced drug efflux activity, we did not observe a direct interaction between P-gp and Hsp90. The enrichment of P-gp and Hsp90 at the cholesterol-rich membrane microdomains is found obligatory for enhanced drug efflux activity. Since inhibition of cholesterol biosynthesis is not interfering with the drug efflux activity, it is presumed that the net cholesterol redistribution mediated by Hsp90 regulates the enhanced drug efflux activity. Our in vitro cholesterol and Hsp90 interaction studies have furthered our presumption that Hsp90 facilitates cholesterol redistribution. The drug adapted cells though exhibited anti-proliferative and anti-tumor effects in response to 17AAG treatment, drug treatment has also enhanced the drug efflux activity. Our findings suggest that drug efflux activity and metastatic potential of tumor cells are independently regulated by Hsp90 by distinct mechanisms. We expose the limitations imposed by Hsp90 inhibitors against multidrug resistant tumor cells.  相似文献   

11.
Current treatment efforts for fungal infections are hampered by the limited availability of antifungal drugs and by the emergence of drug resistance. A powerful strategy to enhance the efficacy of antifungal drugs is to inhibit the molecular chaperone Hsp90. Hsp90 governs drug resistance, morphogenesis and virulence in a leading fungal pathogen of humans, Candida albicans. Our previous work with Saccharomyces cerevisiae established acetylation as a novel mechanism of posttranslational control of Hsp90 function in fungi. We implicated lysine deacetylases (KDACs) as key regulators of resistance to the most widely deployed class of antifungals, the azoles, in both S. cerevisiae and C. albicans. Here, we demonstrate high levels of functional redundancy among the KDACs that are important for regulating Hsp90 function. We identify Hos2, Hda1, Rpd3 and Rpd31 as the KDACs mediating azole resistance and morphogenesis in C. albicans. Furthermore, we identify lysine 30 and 271 as critical acetylation sites on C. albicans Hsp90, and substitutions at these residues compromise Hsp90 function. Finally, we show that pharmacological inhibition of KDACs phenocopies pharmacological inhibition of Hsp90 and abrogates Hsp90‐dependent azole resistance in numerous Candida species. This work illuminates new facets to the impact of KDACs on fungal drug resistance and morphogenesis, provides important insights into the divergence of the C. albicans Hsp90 regulatory network and reveals new targets for development of antifungal drugs.  相似文献   

12.
Heat shock protein 90 (Hsp90) is a promising cancer drug target as a molecular chaperone critical for stabilization and activation of several of the oncoproteins that drive cancer progression. Its actions depend upon its essential ATPase, an activity fortuitously inhibited with a very high degree of selectivity by natural antibiotics: notably the actinomycete-derived benzoquinone ansamycins (e.g. geldanamycin) and certain fungal-derived resorcyclic acid lactones (e.g. radicicol). The molecular interactions made by these antibiotics when bound within the ADP/ATP-binding site of Hsp90 have served as templates for the development of several synthetic Hsp90 inhibitor drugs. Much attention now focuses on the clinical trials of these drugs. However, because microbes have evolved antibiotics to target Hsp90, it is probable that they often exploit Hsp90 inhibition when interacting with each other and with plants. Fungi known to produce Hsp90 inhibitors include mycoparasitic, as well as plant-pathogenic, endophytic and mycorrhizal species. The Hsp90 chaperone may, therefore, be a prominent target in establishing a number of mycoparasitic (interfungal), fungal pathogen–plant and symbiotic fungus–plant relationships. Furthermore the Hsp90 family proteins of the microbes that produce Hsp90 inhibitor antibiotics are able to reveal how drug resistance can arise by amino acid changes in the highly conserved ADP/ATP-binding site of Hsp90.  相似文献   

13.
Respiratory syncytial virus (RSV) is a major cause of respiratory illness in young children, leading to significant morbidity and mortality worldwide. Despite its medical importance, no vaccine or effective therapeutic interventions are currently available. Therefore, there is a pressing need to identify novel antiviral drugs to combat RSV infections. Hsp90, a cellular protein-folding factor, has been shown to play an important role in the replication of numerous viruses. We here demonstrate that RSV requires Hsp90 for replication. Mechanistic studies reveal that inhibition of Hsp90 during RSV infection leads to the degradation of a viral protein similar in size to the RSV L protein, the viral RNA-dependent RNA polymerase, implicating it as an Hsp90 client protein. Accordingly, Hsp90 inhibitors exhibit antiviral activity against laboratory and clinical isolates of RSV in both immortalized as well as primary differentiated airway epithelial cells. Interestingly, we find a high barrier to the emergence of drug resistance to Hsp90 inhibitors, as extensive growth of RSV under conditions of Hsp90 inhibition did not yield mutants with reduced sensitivity to these drugs. Our results suggest that Hsp90 inhibitors may present attractive antiviral therapeutics for treatment of RSV infections and highlight the potential of chaperone inhibitors as antivirals exhibiting high barriers to development of drug resistance.  相似文献   

14.
Lee CH  Hong HM  Chang YY  Chang WW 《Biochimie》2012,94(6):1382-1389
Heat shock protein (Hsp) 90 is an ATP-dependent chaperone and its expression has been reported to be associated with poor prognosis of breast cancer. Cancer stem cells (CSCs) are particular subtypes of cells in cancer which have been demonstrated to be important to tumor initiation, drug resistance and metastasis. In breast cancer, breast CSCs (BCSCs) are identified as CD24-CD44 + cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH+). Although the clinical trials of Hsp90 inhibitors in breast cancer therapy are ongoing, the BCSC targeting effect of them remains unclear. In the present study, we discovered that the expression of Hsp90α was increased in ALDH + human breast cancer cells. Geldanamycin (GA), a Hsp90 inhibitor, could suppress ALDH + breast cancer cells in a dose dependent manner. We are interesting in the insufficiently inhibitory effect of low dose GA treatment. It was correlated with the upregulation of Hsp27 and Hsp70. By co-treatment with HSP inhibitors, quercetin or KNK437 potentiated BCSCs, which determined with ALDH+ population or mammosphere cells, toward GA inhibition, as well as anti-proliferation and anti-migration effects of GA. With siRNA mediated gene silencing, we found that knockdown of Hsp27 could mimic the effect of HSP inhibitors to potentiate the BCSC targeting effect of GA. In conclusion, combination of HSP inhibitors with Hsp90 inhibitors could serve as a potential solution to prevent the drug resistance and avoid the toxicity of high dose of Hsp90 inhibitors in clinical application. Furthermore, Hsp27 may play a role in chemoresistant character of BCSCs.  相似文献   

15.
Wu J  Luo S  Jiang H  Li H 《FEBS letters》2005,579(2):421-426
With two tandem repeated cysteine- and histidine-rich domains (designated as CHORD), CHORD-containing proteins (CHPs) are a novel family of highly conserved proteins that play important roles in plant disease resistance and animal development. Through interacting with suppressor of the G2 allele of Skp1 (SGT1) and Hsp90, plant CHORD-containing protein RAR1 (required for Mla resistance 1) plays a critical role in disease resistance mediated by multiple R genes. Yet, the physiological function of vertebrate CHORD-containing protein-1 (Chp-1) has been poorly investigated. In this study, we provide the first biochemical evidence demonstrating that mammalian Chp-1 is a novel Hsp90-interacting protein. Mammalian Chp-1 contains two CHORD domains (I and II) and one CS domain (a domain shared by CHORD-containing proteins and SGT1). With sequence and structural similarity to Hsp90 co-chaperones p23 and SGT1, Chp-1 binds to the ATPase domain of Hsp90, but the biochemical property of the interaction is unique. The Chp-1-Hsp90 interaction is independent of ATP and ATPase-coupled conformational change of Hsp90, a feature that distinguishes Chp-1 from p23. Furthermore, it appears that multiple domains of Chp-1 are required for stable Chp-1-Hsp90 interaction. Unlike SGT1 whose CS domain is sufficient for Hsp90 binding, the CS domain of Chp-1 is essential but not sufficient for Hsp90 binding. While the CHORD-I domain of Chp-1 is dispensable for Hsp90 binding, the CHORD-II domain and the linker region are essential. Interestingly, the CHORD-I domain of plant RAR1 protein is solely responsible for Hsp90 binding. The unique Chp-1-Hsp90 interaction may be indicative of a distinct biological activity of Chp-1 and functional diversification of CHORD-containing proteins during evolution.  相似文献   

16.
Doxorubicin is an antineoplastic drug widely used in cancer treatment. However, many tumors are intrinsically resistant to the drug or show drug resistance after an initial period of response. Among the different molecules implicated with doxorubicin resistance are the heat shock proteins (Hsps). At present we do not know with certainty the mechanism(s) involved in such resistance. In the present study, to advance our knowledge on the relationship between Hsps and drug resistance, we have used peripheral blood mononuclear cells obtained from healthy nonsmoker donors to evaluate the capacity of a preliminary heat shock to elicit the Hsp response and to establish the protection against the deoxyribonucleic acid (DNA) damage induced by doxorubicin. DNA damage and repair were determined using the alkaline comet assay. We also measured the expression of Hsp27, Hsp60, Hsp70, Hsp90, hMLH1, hMSH2, and proliferating cell nuclear antigen by immunocytochemistry. The damage induced by doxorubicin was more efficiently repaired when the cells were previously heat shocked followed by a resting period of 24 hours before drug exposure, as shown by (1) the increased number of undamaged cells (P < 0.05), (2) the increased DNA repair capacity (P < 0.05), and (3) the high expression of the mismatch repair (MMR) proteins hMLH1 and hMSH2 (P < 0.05). In addition, in the mentioned group of cells, we confirmed by Western blot high expression levels of Hsp27 and Hsp70. We also noted a nuclear translocation of Hsp27 and mainly of Hsp70. Furthermore, inducible Hsp70 was more expressed in the nucleus than Hsc70, showing a possible participation of Hsp70 in the DNA repair process mediated by the MMR system.  相似文献   

17.
18.
Hsp90 is an important cellular chaperone and attractive target for therapeutics against both cancer and infectious organisms. The Hsp90 protein from the parasite Plasmodium falciparum, the causative agent of malaria, is critical for this organism's survival; the anti‐Hsp90 drug geldanamycin is toxic to P. falciparum growth. We have solved the structure of the N‐terminal ATP‐binding domain of P. falciparum Hsp90, which contains a principal drug‐binding pocket, in both apo and ADP‐bound states at 2.3 Å resolution. The structure shows that P. falciparum Hsp90 is highly similar to human Hsp90, and likely binds agents such as geldanamycin in an identical manner. Our results should aid in the structural understanding of Hsp90‐drug interactions in P. falciparum, and provide a scaffold for future drug‐discovery efforts. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Inhibitors of the Hsp90 molecular chaperone are showing promise as anti-cancer agents. Here we describe a series of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors that were identified following structure-driven optimization of purine hits revealed by NMR based screening of a proprietary fragment library. Ligand-Hsp90 X-ray structures combined with molecular modeling led to the rational displacement of a conserved water molecule leading to enhanced affinity for Hsp90 as measured by fluorescence polarization, isothermal titration calorimetry and surface plasmon resonance assays. This displacement was achieved with a nitrile group, presenting an example of efficient gain in binding affinity with minimal increase in molecular weight. Some compounds in this chemical series inhibit the proliferation of human cancer cell lines in vitro and cause depletion of oncogenic Hsp90 client proteins and concomitant elevation of the co-chaperone Hsp70. In addition, one compound was demonstrated to be orally bioavailable in the mouse. This work demonstrates the power of structure-based design for the rapid evolution of potent Hsp90 inhibitors and the importance of considering conserved water molecules in drug design.  相似文献   

20.
Hsp90 potentiates the evolution of azole resistance in the model yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans via calcineurin. Here, we explored effectors downstream of calcineurin regulating this Hsp90-dependent trait. Using S. cerevisiae erg3 mutants as a model, we determined that both Crz1 and Hph1 modulate azole resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号