首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The physiological properties of most ion channels are defined experimentally by functional expression of their pore-forming alpha subunits in Xenopus laevis oocytes. Here, we cloned a family of Xenopus KCNE genes that encode MinK-related peptide K(+) channel beta subunits (xMiRPs) and demonstrated their constitutive expression in oocytes. Electrophysiological analysis of xMiRP2 revealed that when overexpressed this gene modulates human cardiac K(+) channel alpha subunits HERG (human ether-a-go-go-related gene) and KCNQ1 by suppressing HERG currents and removing the voltage dependence of KCNQ1 activation. The ability of endogenous levels of xMiRP2 to contribute to the biophysical attributes of overexpressed mammalian K(+) channels in oocyte studies was assessed next. Injection of an xMiRP2 sequence-specific short interfering RNA (siRNA) oligo reduced endogenous xMiRP2 expression 5-fold, whereas a control siRNA oligo had no effect, indicating the effectiveness of the RNA interference technique in Xenopus oocytes. The functional effects of endogenous xMiRP2 silencing were tested using electrophysiological analysis of heterologously expressed HERG channels. The RNA interference-mediated reduction of endogenous xMiRP2 expression increased macroscopic HERG current as much as 10-fold depending on HERG cRNA concentration. The functional effects of human MiRP1 (hMiRP1)/HERG interaction were also affected by endogenous xMiRP2. At high HERG channel density, at which the effects of endogenous xMiRP2 are minimal, hMiRP1 reduced HERG current. At low HERG current density, hMiRP1 paradoxically up-regulated HERG current, a result consistent with hMiRP1 rescuing HERG from suppression by endogenous xMiRP2. Thus, endogenous Xenopus MiRP subunits contribute to the base-line properties of K(+) channels like HERG in oocyte expression studies, which could explain expression level- and expression system-dependent variation in K(+) channel function.  相似文献   

2.
Mutations in the human ether-a-go-go-related gene (HERG) cause long QT syndrome, an inherited disorder of cardiac repolarization that predisposes affected individuals to life-threatening arrhythmias. HERG encodes the cardiac rapid delayed rectifier potassium channel that mediates repolarization of ventricular action potentials. In this study, we used the oocyte expression system and voltage clamp techniques to determine the functional consequences of eight long QT syndrome-associated mutations located in the amino-terminal region of HERG (F29L, N33T, G53R, R56Q, C66G, H70R, A78P, and L86R). Mutant subunits formed functional channels with altered gating properties when expressed alone in oocytes. Deactivation was accelerated by all mutations. Some mutants shifted the voltage dependence of channel availability to more positive potentials. Voltage ramps indicated that fast deactivation of mutant channels would reduce outward current during the repolarization phase of the cardiac action potential and cause prolongation of the corrected QT interval, QTc. The amino-terminal region of HERG was recently crystallized and shown to possess a Per-Arnt-Sim (PAS) domain. The location of these mutations suggests they may disrupt the PAS domain and interfere with its interaction with the S4-S5 linker of the HERG channel.  相似文献   

3.
Tu DN  Zou AR  Liao YH  Du YM  Wang XP  Li L 《生理学报》2008,60(4):525-534
采用双电极电压钳技术,研究酮色林对表达在非洲爪蟾卵母细胞上的野生型和Y652突变型人类ether-a-go-go相关基因(human ether-a-go-go-related gene,HERG)钾通道的阻断效应,观测HERG通道的分子位点特性改变对其阻断效应的影响.结果显示,酮色林以电压依赖性和浓度依赖性的方式阻断野生型的HERG钾通道电流.尾电流包裹程序记录电流显示酮色林对HERG钾通道微小的张力性阻断.阻断特征符合对开放状态通道的阻断特征.酮色林也能调节失活状态的HERG钾通道.位于孔道S6区的氨基酸位点突变Y652A和Y652R可显著减弱酮色林对HERG通道的阻断作用.同野生犁HERG钾通道的阻断相比,Y652A突变使阻断的IC50提高72倍,而Y652R突变使阻断的IC50提高53倍.Y652A和Y652R的阴断效应之间没有明显的差别.以上结果提示,酮色林优先阻断开放状态的HERG钾通道,而Y652是酮色林与通道结合的关键位点之一.  相似文献   

4.
钩藤碱对human ether-a-go-go相关基因通道的抑制作用   总被引:1,自引:0,他引:1  
Gui L  Li ZW  Du R  Yuan GH  Li W  Ren FX  Li J  Yang JG 《生理学报》2005,57(5):648-652
将human ether-a-go-go相关基因(HERG)cRNA注射到非洲爪蟾卵母细胞,采用双电极电压钳技术,观察钩藤碱对表达电流的影响.结果显示(1)钩藤碱抑制HERG通道的表达是浓度依赖性的,IC50为(773.4±42.5)μmol/L.(2)钩藤碱抑制HERG通道的表达是电压依赖性的,最大抑制率在-20 mV,为15%.上述结果提示,钩藤碱抑制HERG编码的钾通道,导致心室复极时间延长,揭示了与钩藤碱相关的心肌钾通道的分子生物学基础.  相似文献   

5.
Mutations of the cyclic nucleotide binding domain (CNBD) may disrupt human ether-a-go-go-related gene (hERG) K(+) channel function and lead to hereditary long QT syndrome (LQTS). We identified a novel missense mutation located in close proximity to the CNBD, hERG R744P, in a patient presenting with recurrent syncope and aborted cardiac death triggered by sudden auditory stimuli. Functional properties of wild type (WT) and mutant hERG R744P subunits were studied in Xenopus laevis oocytes using two-electrode voltage clamp electrophysiology and Western blot analysis. HERG R744P channels exhibited reduced activating currents compared to hERG WT (1.48±0.26 versus 3.40±0.29μA; n=40). These findings were confirmed by tail current analysis (hERG R744P, 0.53±0.07μA; hERG WT, 0.97±0.06μA; n=40). Cell surface trafficking of hERG R744P protein subunits was not impaired. To simulate the autosomal-dominant inheritance associated with LQTS, WT and R744P subunits were co-expressed in equimolar ratio. Mean activating and tail currents were reduced by 32% and 25% compared to hERG WT (n=40), indicating that R744P protein did not exert dominant-negative effects on WT channels. The half-maximal activation voltage was not significantly affected by the R744P mutation. This study highlights the significance of in vitro testing to provide mechanistic evidence for pathogenicity of mutations identified in LQTS. The functional defect associated with hERG R744P serves as molecular basis for LQTS in the index patient.  相似文献   

6.
We investigated the role of protein kinase A (PKA) in regulation of the human ether-a-go-go-related gene (HERG) potassium channel activation. HERG clones with single mutations destroying one of four consensus PKA phosphorylation sites (S283A, S890A, T895A, S1137A), as well as one clone carrying all mutations with no PKA phosphorylation sites (HERG 4M) were constructed. These clones were expressed heterologously in Xenopus oocytes, and HERG potassium currents were measured with the two microelectrode voltage clamp technique. Application of the cAMP-specific phosphodiesterase (PDE IV) inhibitor Ro-20-1724 (100 microM), which results in an increased cAMP level and PKA stimulation, induced a reduction of HERG wild type outward currents by 19.1% due to a shift in the activation curve of 12.4 mV. When 100 microM Ro-20-1724 was applied to the HERG 4M channel, missing all PKA sites, there was no significant shift in the activation curve, and the current amplitude was not reduced. Furthermore, the adenylate cyclase activator forskolin that leads to PKA activation (400 microM, 60 min), shifted HERG wild type channel activation by 14.1 mV and reduced currents by 39.9%, whereas HERG 4M channels showed only a small shift of 4.3 mV and a weaker current reduction of 22.3%. We conclude that PKA regulates HERG channel activation, and direct phosphorylation of the HERG channel protein has a functional role that may be important in regulation of cardiac repolarization.  相似文献   

7.
Long QT syndrome (LQTS) is a cardiac repolarization disorder that can lead to arrhythmias and sudden death. Chromosome 7-linked inherited LQTS (LQT2) is caused by mutations in human ether-a-go-go-related gene (HERG; KCNH2), whereas drug-induced LQTS is caused primarily by HERG channel block. Many common polymorphisms are functionally silent and have been traditionally regarded as benign and without physiological consequence. However, the identification of common nonsynonymous single nucleotide polymorphisms (nSNPs; i.e., amino-acid coding variants) with functional phenotypes in the SCN5A Na(+) channel and MiRP1 K(+) channel beta-subunit have challenged this viewpoint. In this report, we test the hypothesis that common missense HERG polymorphisms alter channel physiology. Comprehensive mutational analysis of HERG was performed on genomic DNA derived from a population-based cohort of sudden infant death syndrome and two reference allele cohorts derived from 100 African American and 100 Caucasian individuals. Amino acid-encoding variants were considered common polymorphisms if they were present in at least two of the three study cohorts with an allelic frequency >0.5%. Four nSNPs were identified: K897T, P967L, R1047L, and Q1068R. Wild-type (WT) and polymorphic channels were heterologously expressed in human embryonic kidney cells, and biochemical and voltage-clamp techniques were used to characterize their functional properties. All channel types were processed similarly, but several electrophysiological differences were identified: 1) K897T current density was lower than the other polymorphic channels; 2) K897T channels activated at more negative potentials than WT and R1047L; 3) K897T and Q1068R channels inactivated and recovered from inactivation faster than WT, P967L, and R1047L channels; and 4) K897T channels showed subtle differences compared with WT channels when stimulated with an action potential waveform. In contrast to K897T and Q1068R channels, P967L and R1047L channels were electrophysiologically indistinguishable from WT channels. All HERG channels had similar sensitivity to block by cisapride. Therefore, some HERG polymorphic channels are electrophysiologically different from WT channels.  相似文献   

8.
Previously, we characterized a Shaker-related family of voltage-gated potassium channels (RCK) in rat brain. Now, we describe a second family of voltage-gated potassium channels in the rat nervous system. This family is related to the Drosophila Shaw gene and has been dubbed Raw. In contrast to the RCK potassium channel family the Raw family utilizes extensive alternative splicing for expressing potassium channel subunits with variant C-termini. These alternative C-termini do not appear to influence the electrophysiological and pharmacological properties as studied in the Xenopus oocyte expression system. In situ hybridizations to sections of rat brain indicate that members of the Raw family are expressed in distinct areas of the central nervous system. Probably, Raw channels are expressed predominantly as homomultimers. Immunocytochemical experiments with antibodies against Raw3 and RCK4 proteins which form two distinct A-type potassium channels indicate that in hippocampus the two channels are expressed both in different neurons and in the same ones. In general, properties of Raw potassium channels appeared to be similar to RCK channels. However, Raw outward currents, in contrast to RCK currents, exhibit an intense rectification at test potentials higher than +20 to +40 mV. RCK and Raw channel subunits did not measurably coassemble into RCK/Raw heteromultimers after coinjecting RCK and Raw cRNA into Xenopus oocytes. These results suggest that members of the RCK and the Raw potassium channel families express potassium channels which form independent outward current systems. Combining the results of in situ hybridizations, immunocytochemical staining and expression of the cloned potassium channels in Xenopus oocytes demonstrates that unrestrained mixing of potassium channel subunits to form hybrid channels does not occur in the rat central nervous system. A single neuron is able to express multiple, independently assembled potassium channels.  相似文献   

9.
HERG CCardiac, a C-terminal splice variant of the human ether-à-go-go-related gene (HERG A), was identified and found to be 100% homologous to HERGUSO. Real-time polymerase chain reaction data indicated that in the human heart HERG CCardiac mRNA was expressed eight times more than HERG A, whereas in human ventricular tissue it was expressed six times more than HERG A. A HERG CCardiac-green fluorescence protein (GFP) construct was heterologously expressed in Xenopus oocytes. Confocal micrographs revealed that HERG CCardiac was mainly expressed in the plasma membrane. HERG CCardiac channel expressed in oocytes produced slower inactivating outward currents and faster deactivating tail currents than those of HERG A channel. Equal amounts of HERG A and HERG CCardiac cRNA coinjected into oocytes formed intermediate HERG A + HERG CCardiac heteromultimers, which was reconfirmed by immunoprecipitation experiments with a HERG A N-terminal antibody. These heteromultimers had different inactivation, deactivation and activation kinetics from those of HERG A and HERG CCardiac channels. HERG A + HERG CCardiac heteromultimers significantly reduced the model action potential mean amplitude and increased the fast and slow inactivation τ values of the action potential repolarization phase, suggesting involvement of HERG A and HERG CCardiac heteromultimers in modulation of the refractory interval.  相似文献   

10.
ATP-sensitive potassium (K(ATP)) channels play important roles in regulating insulin secretion, controlling vascular tone, and protecting cells against metabolic stresses. K(ATP) channels are heterooctamers of four pore-forming inwardly rectifying (Kir6.2) subunits and four sulfonylurea receptor (SUR) subunits. K(ATP) channels containing SUR1 (e.g. pancreatic) and SUR2A (e.g. cardiac) display distinct metabolic sensitivities and pharmacological profiles. The reported expression of both SUR1 and SUR2 together with Kir6.2 in some cells raises the possibility that heteromeric channels containing both SUR subtypes might exist. To test whether SUR1 can coassemble with SUR2A to form functional K(ATP) channels, we made tandem constructs by fusing SUR to either a wild-type (WT) or a mutant N160D Kir6.2 subunit. The latter mutation greatly increases the sensitivity of K(ATP) channels to block by intracellular spermine. We expressed, individually and in combinations, tandem constructs SUR1-Kir6.2 (S1-WT), SUR1-Kir6.2[N160D] (S1-ND), and SUR2A-Kir6.2[N160D] (S2-ND) in Xenopus oocytes, and studied the voltage dependence of spermine block in inside-out macropatches over a range of spermine concentrations and RNA mixing ratios. Each tandem construct expressed alone supported macroscopic K(+) currents with pharmacological properties indistinguishable from those of the respective native channel types. Spermine sensitivity was low for S1-WT but high for S1-ND and S2-ND. Coexpression of S1-WT and S1-ND generated current components with intermediate spermine sensitivities indicating the presence of channel populations containing both types of Kir subunits at all possible stoichiometries. The relative abundances of these populations, determined by global fitting over a range of conditions, followed binomial statistics, suggesting that WT and N160D Kir6.2 subunits coassemble indiscriminately. Coexpression of S1-WT with S2-ND also yielded current components with intermediate spermine sensitivities, suggesting that SUR1 and SUR2A randomly coassemble into functional K(ATP) channels. Further pharmacological characterization confirmed coassembly of not only S1-WT and S2-ND, but also of coexpressed free SUR1, SUR2A, and Kir6.2 into functional heteromeric channels.  相似文献   

11.
12.
HERG (KCNH2) and ether-à-go-go (eag) (KCNH1) are members of the same subfamily of voltage-gated K+ channels. In eag, voltage-dependent activation is significantly slowed by extracellular divalent cations. To exert this effect, ions bind to a site located between transmembrane segments S2 and S3 in the voltage sensor domain where they interact with acidic residues that are conserved only among members of the eag subfamily. In HERG channels, extracellular divalent ions significantly accelerate deactivation. To investigate the ion-binding site in HERG, acidic residues in S2 and S3 were neutralized singly or in pairs to alanine, and the functional effects of extracellular Mg2+ were characterized in Xenopus oocytes. To modulate deactivation kinetics in HERG, divalent cations interact with eag subfamily-specific acidic residues (D460 and D509) and also with an acidic residue in S2 (D456) that is widely conserved in the voltage-gated channel superfamily. In contrast, the analogous widely-conserved residue does not contribute to the ion-binding site that modulates activation kinetics in eag. We propose that structural differences between the ion-binding sites in the eag and HERG voltage sensors contribute to the differential regulation of activation and deactivation gating in these channels. A previously proposed model for S4 conformational changes during voltage-dependent activation can account for the differential regulation of gating seen in eag and HERG.  相似文献   

13.
HERG (KCNH2) and ether-à-go-go (eag) (KCNH1) are members of the same subfamily of voltage-gated K+ channels. In eag, voltage-dependent activation is significantly slowed by extracellular divalent cations. To exert this effect, ions bind to a site located between transmembrane segments S2 and S3 in the voltage sensor domain where they interact with acidic residues that are conserved only among members of the eag subfamily. In HERG channels, extracellular divalent ions significantly accelerate deactivation. To investigate the ionbinding site in HERG, acidic residues in S2 and S3 were neutralized singly or in pairs to alanine, and the functional effects of extracellular Mg(2+) were characterized in Xenopus oocytes. To modulate deactivation kinetics in HERG, divalent cations interact with eag subfamily-specific acidic residues (D460 and D509) and also with an acidic residue in S2 (D456) that is widely conserved in the voltage-gated channel superfamily. In contrast, the analogous widely-conserved residue does not contribute to the ion-binding site that modulates activation kinetics in eag. We propose that structural differences between the ion-binding sites in the eag and HERG voltage sensors contribute to the differential regulation of activation and deactivation gating in these channels. A previously proposed model for S4 conformational changes during voltagedependent activation can account for the differential regulation of gating seen in eag and HERG.  相似文献   

14.
Native cardiac and skeletal muscle Na channels are complexes of alpha and beta 1 subunits. While structural correlates for activation, inactivation, and permeation have been identified in the alpha subunit and the expression of alpha alone produces functional channels, beta 1- deficient rat skeletal muscle (mu 1) and brain Na channels expressed in Xenopus oocytes do not gate normally. In contrast, the requirement of a beta 1 subunit for normal function of Na channels cloned from rat heart or human heart (hH1) has been disputed. Coinjection of rat brain beta 1 subunit cRNA with hH1 (or mu 1) alpha subunit cRNA into oocytes increased peak Na currents recorded 2 d after injection by 240% (225%) without altering the voltage dependence of activation. In mu 1 channels, steady state inactivation was shifted to more negative potentials (by 6 mV, p < 0.01), but the shift of 2 mV was not significant for hH1 channels. Nevertheless, coexpression with beta 1 subunit speeded the decay of macroscopic current of both isoforms. Ensemble average hH1 currents from cell-attached patches revealed that coexpression of beta 1 increases the rate of inactivation (quantified by time to 75% decay of current; p < 0.01 at -30, -40, and -50 mV). Use- dependent decay of hH1 Na current during repeated pulsing to -20 mV (1 s, 0.5 Hz) after a long rest was reduced to 16 +/- 2% of the first pulse current in oocytes coexpressing alpha and beta 1 subunits compared to 35 +/- 8% use-dependent decay for oocytes expressing the alpha subunit alone. Recovery from inactivation of mu 1 and hH1 Na currents after 1-s pulses to -20 mV is multiexponential with three time constants; coexpression of beta 1 subunit decreased all three recovery time constants. We conclude that the beta 1 subunit importantly influences the function of Na channels produced by coexpression with either the hH1 or mu 1 alpha subunits.  相似文献   

15.
Hereditary long QT syndrome (hLQTS) is a heterogeneous genetic disease characterized by prolonged QT interval in the electrocardiogram, recurrent syncope, and sudden cardiac death. Mutations in the cardiac potassium channel HERG (KCNH2) are the second most common form of hLQTS and reduce the delayed rectifier K(+) currents, thereby prolonging repolarization. We studied a novel COOH-terminal missense mutation, HERG R752W, which segregated with the disease in a family of 101 genotyped individuals. When the mutant cRNA was expressed in Xenopus oocytes it produced enhanced rather than reduced currents. Simulations using the Luo-Rudy model predicted minimal shortening rather than prolongation of the cardiac action potential. Consequently, a normal or shortened QT interval would be expected in contrast to the long QT observed clinically. This anomaly was resolved by our observation that the mutant protein was not delivered to the plasma membrane of mammalian cells but was retained intracellularly. We found that this trafficking defect was corrected at lower incubation temperatures and that functional channels were now delivered to the plasma membrane. However, trafficking could not be restored by chemical chaperones or E-4031, a specific blocker of HERG channels. Therefore, HERG R752W represents a new class of trafficking mutants in hLQTS. The occurrence of different classes of misprocessed channels suggests that a unified therapeutic approach for altering HERG trafficking will not be possible and that different treatment modalities will have to be matched to the different classes of trafficking mutants.  相似文献   

16.
JP Johnson  Jr  JR Balser    PB Bennett 《Biophysical journal》1999,77(5):2534-2541
We have studied the functional effects of extracellular Cd(2+) on human ether-a-go-go-related gene (HERG) encoded K(+) channels. Low concentrations (10-200 &mgr;M) of extracellular Cd(2+) increased outward currents through HERG channels; 200 &mgr;M Cd(2+) more than doubled HERG currents and altered current kinetics. Cd(2+) concentrations up to 200 &mgr;M did not change the voltage dependence of channel activation, but shifted the voltage dependence of inactivation to more depolarized membrane potentials. Cd(2+) concentrations >/=500 &mgr;M shifted the voltage dependence of channel activation to more positive potentials. These results are consistent with a somewhat specific ability of Cd(2+) to destabilize the inactivated state. We tested the hypothesis that channel inactivation is essential for Cd(2+)-induced increases in HERG K(+) currents, using a double point mutation (G628C/S631C) that diminishes HERG inactivation (Smith, P. L., T. Baukrowitz, and G. Yellen. 1996. Nature (Lond.). 379:833-836). This inactivation-removed mutant is insensitive to low concentrations of Cd(2+). Thus, Cd(2+) had two distinct effects on HERG K(+) channels. Low concentrations of Cd(2+) caused relatively selective effects on inactivation, resulting in a reduction of the apparent rectification of the channel and thereby increasing HERG K(+) currents. Higher Cd(2+) concentrations affected activation gating as well, possibly by a surface charge screening mechanism or by association with a lower affinity site.  相似文献   

17.
Mutations in the human ether-a-gogo-related gene (HERG) K(+) channel gene cause chromosome 7-linked long QT syndrome type 2 (LQT2), which is characterized by a prolonged QT interval in the electrocardiogram and an increased susceptibility to life-threatening cardiac arrhythmias. LQT2 mutations produce loss-of-function phenotypes and reduce I(Kr) currents either by the heteromeric assembly of non- or malfunctioning channel subunits with wild type subunits at the cell surface or by retention of misprocessed mutant HERG channels in the endoplasmic reticulum. Misprocessed mutations often encode for channel proteins that are functional upon incorporation into the plasma membrane. As a result the pharmacological correction of folding defects and restoration of protein function are of considerable interest. Here we report that the trafficking-deficient pore mutation HERG G601S was rescued by a series of HERG channel blockers that increased cell surface expression. Rescue by these pharmacological chaperones varied directly with their blocking potency. We used structure-activity relationships and site-directed mutagenesis to define the binding site of the pharmacological chaperones. We found that binding occurred in the inner cavity and correlated with hydrophobicity and cationic charge. Rescue was domain-restricted because the trafficking of two misprocessed mutations in the C terminus, HERG F805C and HERG R823W, was not restored by channel blockers. Our findings represent a first step toward the design of pharmacological chaperones that will rescue HERG K(+) channels without block.  相似文献   

18.
The transmembrane domains of HERG (S1-S3) contain six negative charges: three are conserved in all voltage-gated K channels (D456 and D466 in S2, D501 in S3) and three are unique to the EAG family (D411 in S1, D460 in S2, and D509 in S3). We infer the functional role of these aspartates by studying how substituting them with cysteine, one at a time, affects the channel function. D456C is not functional, suggesting that this negative charge may play a critical role in channel protein folding during biogenesis, as has been shown for its counterpart in the Shaker channel. Data from the other five functional mutants suggest that D411 can stabilize the HERG channel in the closed state, while D460 and D509 have the opposite effect. D466 and D501 both may contribute to voltage-sensing during the activation process. On the other hand, all five aspartates work in a concerted fashion in contributing to the slow deactivation process of the HERG channel. Accessibility tests of the introduced thiol groups to extracellular MTS reagents indicate that water-filled crevices penetrate deep into the HERG protein core, reaching the cytoplasmic halves of S1 and S2. At these deep locations, accessibility of 411C and 466C to the extracellular aqueous phase is voltage dependent, suggesting that conformational changes occur in S1 and S2 or the surrounding crevices during gating. Increasing extracellular [H+] accelerates HERG deactivation. This effect is suppressed by substituting the aspartates with cysteine, suggesting that protonation of these aspartates may contribute to the signaling pathway whereby external [H+] influences conformational changes in the channel's cytoplasmic domains (where deactivation takes place). There is no evidence for a metal ion binding site coordinated by negative charges in the transmembrane domains of HERG, as the one described for the EAG channel.  相似文献   

19.
The human ether-a-go-go-related gene (HERG) product forms the pore-forming subunit of the delayed rectifier K(+) channel in the heart. Unlike the cardiac isoform, the erg K(+) channels in native smooth muscle demonstrate gating properties consistent with a role in maintaining resting potential. We have cloned the smooth muscle isoform of HERG, denoted as erg1-sm, from human and rabbit colon. erg1-sm is truncated by 101 amino acids in the C terminus due to a single nucleotide deletion in the 14th exon. Sequence alignment against HERG showed a substitution of alanine for valine in the S4 domain. When expressed in Xenopus oocytes, erg1-sm currents had much faster activation and deactivation kinetics compared with HERG. Step depolarization positive to -20 mV consistently produced a transient outward component. The threshold for activation of erg1-sm was -60 mV and steady-state conductance was approximately 10-fold greater than HERG near the resting potential of smooth muscle. Site-directed mutagenesis of alanine to valine in the S4 region of erg1-sm converted many of the properties to that of the cardiac HERG, including shifts in the voltage dependence of activation and slowing of deactivation. These studies define the functional role of a novel isoform of the ether-a-go-go-related gene K(+) channel in smooth muscle.  相似文献   

20.
Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K+ channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium α-subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two-hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C-terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called KHA domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal KHA domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号