首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Schizophrenia candidate regions 33-51 cM in length on chromosomes 5q, 6q, 10p, and 13q were investigated for genetic linkage with mapped markers with an average spacing of 5.64 cM. We studied 734 informative multiplex pedigrees (824 independent affected sibling pairs [ASPs], or 1,003 ASPs when all possible pairs are counted), which were collected in eight centers. Cases with diagnoses of schizophrenia or schizoaffective disorder (DSM-IIIR criteria) were considered affected (n=1,937). Data were analyzed with multipoint methods, including nonparametric linkage (NPL), ASP analysis using the possible-triangle method, and logistic-regression analysis of identity-by-descent (IBD) sharing in ASPs with sample as a covariate, in a test for intersample heterogeneity and for linkage with allowance for intersample heterogeneity. The data most supportive for linkage to schizophrenia were from chromosome 6q; logistic-regression analysis of linkage allowing for intersample heterogeneity produced an empirical P value <.0002 with, or P=.0004 without, inclusion of the sample that produced the first positive report in this region; the maximum NPL score in this region was 2.47 (P=.0046), the maximum LOD score (MLS) from ASP analysis was 3.10 (empirical P=.0036), and there was significant evidence for intersample heterogeneity (empirical P=.0038). More-modest support for linkage was observed for chromosome 10p, with logistic-regression analysis of linkage producing an empirical P=. 045 and with significant evidence for intersample heterogeneity (empirical P=.0096).  相似文献   

2.
Chronic lymphocytic leukemia (CLL) and other B-cell lymphoproliferative disorders (LPDs) show clear evidence of familial aggregation, but the inherited basis is largely unknown. To identify a susceptibility gene for CLL, we conducted a genomewide linkage analysis of 115 pedigrees, using a high-density single-nucleotide polymorphism (SNP) array containing 11,560 markers. Multipoint linkage analyses were undertaken using both nonparametric (model-free) and parametric (model-based) methods. Our results confirm that the presence of high linkage disequilibrium (LD) between SNP markers can lead to inflated nonparametric linkage (NPL) and LOD scores. After the removal of high-LD SNPs, we obtained a maximum NPL of 3.14 (P=.0008) on chromosome 11p11. The same genomic position also yielded the highest multipoint heterogeneity LOD (HLOD) score under both dominant (HLOD 1.95) and recessive (HLOD 2.78) models. In addition, four other chromosomal positions (5q22-23, 6p22, 10q25, and 14q32) displayed HLOD scores >1.15 (which corresponds to a nominal P value <.01). None of the regions coincided with areas of common chromosomal abnormalities frequently observed for CLL. These findings strengthen the argument for an inherited predisposition to CLL and related B-cell LPDs.  相似文献   

3.
Isolated or nonsyndromic cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex etiology. A 10-cM genome scan of 388 extended multiplex families with CL/P from seven diverse populations (2,551 genotyped individuals) revealed CL/P genes in six chromosomal regions, including a novel region at 9q21 (heterogeneity LOD score [HLOD]=6.6). In addition, meta-analyses with the addition of results from 186 more families (six populations; 1,033 genotyped individuals) showed genomewide significance for 10 more regions, including another novel region at 2q32-35 (P=.0004). These are the first genomewide significant linkage results ever reported for CL/P, and they represent an unprecedented demonstration of the power of linkage analysis to detect multiple genes simultaneously for a complex disorder.  相似文献   

4.
Nonsyndromic cleft lip with or without cleft palate (CL/P) is a complex disorder of multigenic origin involving between two and ten loci. Linkage and association studies of CL/P have implicated a number of candidate genes and regions but have often proved difficult to replicate. Here, we report the findings from a two-stage genome-wide scan of 92 affected sib-pairs to identify susceptibility loci to CL/P. An initial set of 400 microsatellite markers was used, with an average spacing of 10 cM throughout the genome. Eleven regions on eight chromosomes were found to have a P-value smaller than 0.05. These eight chromosomes were then further mapped with a second set of markers to increase the average map density to 5 cM. In seven out of eleven areas densely mapped, significance was markedly increased by decreasing the marker interval. Excessive allele sharing was found at 1p (NPL=2.35, P=0.009, MLS=1.51), 2p (NPL=1.77, P= 0.04, MLS=0.66), 6p (NPL=2.35, P=0.009, MLS=1.34), 8q (NPL=2.15, P=0.015, MLS= 1.51) 11 cen (NPL=2.70, P=0.003, MLS=2.10), 12q (NPL=2.08, P=0.02, MLS= 1.5), 16p (NPL=2.1, P=0.018, MLS=0.97) and Xcen-q (NPL=2.40, P=0.008, MLS=2.68). Although none reached the level required for significant susceptibility loci, two of these areas have previously been implicated in CL/P, viz. 2p13, an area harbouring the TGFA gene, and 6p23-24. We also demonstrate highly suggestive linkage to a susceptibility locus for nonsyndromic clefting on the X chromosome. Further studies are currently underway to replicate these findings in a larger cohort of affected sib-pairs.  相似文献   

5.
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is the most common behavioral disorder of childhood. Twin, adoption, segregation, association, and linkage studies have confirmed that genetics plays a major role in conferring susceptibility to ADHD. We applied model-based and model-free linkage analyses, as well as the pedigree disequilibrium test, to the results of a genomewide scan of extended and multigenerational families with ADHD from a genetic isolate. In these families, ADHD is highly comorbid with conduct and oppositional defiant disorders, as well as with alcohol and tobacco dependence. We found evidence of linkage to markers at chromosomes 4q13.2, 5q33.3, 8q11.23, 11q22, and 17p11 in individual families. Fine mapping applied to these regions resulted in significant linkage in the combined families at chromosomes 4q13.2 (two-point allele-sharing LOD score from LODPAL = 4.44 at D4S3248), 5q33.3 (two-point allele-sharing LOD score from LODPAL = 8.22 at D5S490), 11q22 (two-point allele-sharing LOD score from LODPAL = 5.77 at D11S1998; multipoint nonparametric linkage [NPL]-log[P value] = 5.49 at approximately 128 cM), and 17p11 (multipoint NPL-log [P value] >12 at approximately 12 cM; multipoint maximum location score 2.48 [alpha = 0.10] at approximately 12 cM; two-point allele-sharing LOD score from LODPAL = 3.73 at D17S1159). Additionally, suggestive linkage was found at chromosome 8q11.23 (combined two-point NPL-log [P value] >3.0 at D8S2332). Several of these regions are novel (4q13.2, 5q33.3, and 8q11.23), whereas others replicate already-published loci (11q22 and 17p11). The concordance between results from different analytical methods of linkage and the replication of data between two independent studies suggest that these loci truly harbor ADHD susceptibility genes.  相似文献   

6.
Obesity is a multigenic trait that has a substantial genetic component. Animal models confirm a role for gene-gene interactions, and human studies suggest that as much as one-third of the heritable variance may be due to nonadditive gene effects. To evaluate potential epistatic interactions among five regions, on chromosomes 7, 10, and 20, that have previously been linked to obesity phenotypes, we conducted pairwise correlation analyses based on alleles shared identical by descent (IBD) for independent obese affected sibling pairs (ASPs), and we determined family-specific nonparametric linkage (NPL) scores in 244 families. The correlation analyses were also conducted separately, by race, through use of race-specific allele frequencies. Conditional analyses for a qualitative trait (body mass index [BMI] >/=27) and hierarchical models for quantitative traits were used to further refine evidence of gene interaction. Both the ASP-specific IBD-sharing probability and the family-specific NPL score revealed that there were strong positive correlations between 10q (88-97 cM) and 20q (65-83 cM), through single-point and multipoint analyses with three obesity thresholds (BMI >/=27, >/=30, and >/=35) across African American and European American samples. Conditional analyses for BMI >/=27 found that the LOD score at 20q rises from 1.53 in the baseline analysis to 2.80 (empirical P=.012) when families were weighted by evidence for linkage at 10q (D10S1646) through use of zero-one weights (weight(0-1)) and to 3.32 (empirical P<.001) when proportional weights (weight(prop)) were used. For percentage fat mass, variance-component analysis based on a two-locus epistatic model yielded significant evidence for interaction between 20q (75 cM) and the chromosome 10 centromere (LOD = 1.74; P=.024), compared with a two-locus additive model (LOD = 0.90). The results from multiple methods and correlated phenotypes are consistent in suggesting that epistatic interactions between loci in these regions play a role in extreme human obesity.  相似文献   

7.
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a rare, severe limb deformity characterized by tibia aplasia with or without split-hand/split-foot deformity. Identification of genetic susceptibility loci for SHFLD has been unsuccessful because of its rare incidence, variable phenotypic expression and associated anomalies, and uncertain inheritance pattern. SHFLD is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has also been postulated. We conducted a genomewide linkage analysis, using a 10K SNP array in a large consanguineous family (UR078) from the United Arab Emirates (UAE) who had disease transmission consistent with an autosomal dominant inheritance pattern. The study identified two novel SHFLD susceptibility loci at 1q42.2-q43 (nonparametric linkage [NPL] 9.8, P=.000065) and 6q14.1 (NPL 7.12, P=.000897). These results were also supported by multipoint parametric linkage analysis. Maximum multipoint LOD scores of 3.20 and 3.78 were detected for genomic locations 1q42.2-43 and 6q14.1, respectively, with the use of an autosomal dominant mode of inheritance with reduced penetrance. Haplotype analysis with informative crossovers enabled mapping of the SHFLD loci to a region of approximately 18.38 cM (8.4 Mb) between single-nucleotide polymorphisms rs1124110 and rs535043 on 1q42.2-q43 and to a region of approximately 1.96 cM (4.1 Mb) between rs623155 and rs1547251 on 6q14.1. The study identified two novel loci for the SHFLD phenotype in this UAE family.  相似文献   

8.
Previous linkage studies in schizophrenia have been discouraging due to inconsistent findings and weak signals. Genetic heterogeneity has been cited as one of the primary culprits for such inconsistencies. We have performed a 10-cM autosomal genomewide linkage scan for schizophrenia susceptibility regions, using 29 multiplex families of Ashkenazi Jewish descent. Although there is no evidence that the rate of schizophrenia among the Ashkenazim differs from that in other populations, we have focused on this population in hopes of reducing genetic heterogeneity among families and increasing the detectable effects of any particular locus. We pursued both allele-sharing and parametric linkage analyses as implemented in Genehunter, version 2.0. Our strongest signal was achieved at chromosome 10q22.3 (D10S1686), with a nonparametric linkage score (NPL) of 3.35 (genomewide empirical P=.035) and a dominant heterogeneity LOD score (HLOD) of 3.14. Six other regions gave NPL scores >2.00 (on chromosomes 1p32.2, 4q34.3, 6p21.31, 7p15.2, 15q11.2, and 21q21.2). Upon follow-up with an additional 23 markers in the chromosome 10q region, our peak NPL score increased to 4.27 (D10S1774; empirical P=.00002), with a 95% confidence interval of 12.2 Mb for the location of the trait locus (D10S1677 to D10S1753). We find these results encouraging for the study of schizophrenia among Ashkenazi families and suggest further linkage and association studies in this chromosome 10q region.  相似文献   

9.
Lung cancer is a major cause of death in the United States and other countries. The risk of lung cancer is greatly increased by cigarette smoking and by certain occupational exposures, but familial factors also clearly play a major role. To identify susceptibility genes for familial lung cancer, we conducted a genomewide linkage analysis of 52 extended pedigrees ascertained through probands with lung cancer who had several first-degree relatives with the same disease. Multipoint linkage analysis, under a simple autosomal dominant model, of all 52 families with three or more individuals affected by lung, throat, or laryngeal cancer, yielded a maximum heterogeneity LOD score (HLOD) of 2.79 at 155 cM on chromosome 6q (marker D6S2436). A subset of 38 pedigrees with four or more affected individuals yielded a multipoint HLOD of 3.47 at 155 cM. Analysis of a further subset of 23 multigenerational pedigrees with five or more affected individuals yielded a multipoint HLOD score of 4.26 at the same position. The 14 families with only three affected relatives yielded negative LOD scores in this region. A predivided samples test for heterogeneity comparing the LOD scores from the 23 multigenerational families with those from the remaining families was significant (P=.007). The 1-HLOD multipoint support interval from the multigenerational families extends from C6S1848 at 146 cM to 164 cM near D6S1035, overlapping a genomic region that is deleted in sporadic lung cancers as well as numerous other cancer types. Parametric linkage and variance-components analysis that incorporated effects of age and personal smoking also supported linkage in this region, but with somewhat diminished support. These results localize a major susceptibility locus influencing lung cancer risk to 6q23-25.  相似文献   

10.
Recent studies suggest that hereditary prostate cancer is a complex disease involving multiple susceptibility genes and variable phenotypic expression. While conducting a genomewide search on 162 North American families with > or =3 members affected with prostate cancer (PRCA), we found evidence for linkage to chromosome 20q13 with two-point parametric LOD scores >1 at multiple sites, with the highest two-point LOD score of 2.69 for marker D20S196. The maximum multipoint NPL score for the entire data set was 3.02 (P=.002) at D20S887. On the basis of findings from previous reports, families were stratified by the presence (n=116) or absence (n=46) of male-to-male transmission, average age of diagnosis (<66 years, n=73; > or =66 years, n=89), and number of affected individuals (<5, n=101; > or =5, n=61) for further analysis. The strongest evidence of linkage was evident with the pedigrees having <5 family members affected with prostate cancer (multipoint NPL 3.22, P=.00079), a later average age of diagnosis (multipoint NPL 3.40, P=.0006), and no male-to-male transmission (multipoint NPL 3.94, P=.00007). The group of patients having all three of these characteristics (n=19) had a multipoint NPL score of 3.69 (P=.0001). These results demonstrate evidence for a PRCA susceptibility locus in a subset of families that is distinct from the groups more likely to be linked to previously identified loci.  相似文献   

11.
Preeclampsia is a common, pregnancy-specific disorder characterized by reduced placental perfusion, endothelial dysfunction, elevated blood pressure, and proteinuria. The pathogenesis of this heterogeneous disorder is incompletely understood, but it has a familial component, which suggests that one or more common alleles may act as susceptibility genes. We hypothesized that, in a founder population, the genetic background of preeclampsia might also show reduced heterogeneity, and we have performed a genomewide scan in 15 multiplex families recruited predominantly in the Kainuu province in central eastern Finland. We found two loci that exceeded the threshold for significant linkage: chromosome 2p25, near marker D2S168 (nonparametric linkage [NPL] score 3.77; P=.000761) at 21.70 cM, and 9p13, near marker D9S169 (NPL score 3.74; P=.000821) at 38.90 cM. In addition, there was a locus showing suggestive linkage at chromosome 4q32 between D4S413 and D4S3046 (NPL score 3.13; P=.003238) at 163.00 cM. In the present study the susceptibility locus on chromosome 2p25 is clearly different (21.70 cM) from the locus at 2p12 found in an Icelandic study (94.05 cM) and the locus at 2q23 (144.7 cM) found in an Australian/New Zealand study. The locus at 9p13 has been shown to be a candidate region for type 2 diabetes in two recently published genomewide scans from Finland and China. The regions on chromosomes 2p25 and 9p13 may harbor susceptibility genes for preeclampsia.  相似文献   

12.
Palauans are an isolated population in Micronesia with lifetime prevalence of schizophrenia (SCZD) of 2%, compared to the world rate of approximately 1%. The possible enrichment for SCZD genes, in conjunction with the potential for reduced etiological heterogeneity and the opportunity to ascertain statistically powerful extended pedigrees, makes Palauans a population of choice for the mapping of SCZD genes. We have used a Markov-chain Monte Carlo method to perform a genomewide multipoint analysis in seven extended pedigrees from Palau. Robust multipoint parametric and nonparametric linkage (NPL) analyses were performed under three nested diagnostic classifications-core, spectrum, and broad. We observed four regions of interest across the genome. Two of these regions-on chromosomes 2p13-14 (for which, under core diagnostic classification, NPL=6.5 and parametric LOD=4.8) and 13q12-22 (for which, under broad diagnostic classification, parametric LOD=3.6, and, under spectrum diagnostic classification, parametric LOD=3.5)-had evidence for linkage with genomewide significance, after correction for multiple testing; with the current pedigree resource and genotyping, these regions are estimated to be 4.3 cM and 19.75 cM in size, respectively. A third region, with intermediate evidence for linkage, was identified on chromosome 5q22-qter (for which, under broad diagnostic classification, parametric LOD=2.5). The fourth region of interest had only borderline suggestive evidence for linkage (on 3q24-28; for this region, under broad diagnostic classification, parametric LOD=2.0). All regions exhibited evidence for genetic heterogeneity. Our findings provide significant evidence for susceptibility loci on chromosomes 2p13-14 and 13q12-22 and support both a model of genetic heterogeneity and the utility of a broader set of diagnostic classifications in the population from Palau.  相似文献   

13.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

14.
Recent studies suggest that hereditary prostate cancer (PRCA) is a complex disease, involving multiple susceptibility genes and variable phenotypic expression. Through linkage analysis, potential prostate cancer susceptibility loci have been mapped to 3 regions on chromosome 1. To investigate the reported linkage to these regions, we conducted linkage studies on 144 PRCA families by using microsatellite markers in regions 1q24-25 (HPC1) and 1q42.2-43 (PCAP). We also examined the 1p36 (CAPB) region in 13 PRCA families with at least one case of brain cancer. No significant evidence of linkage to the HPC1 or PCAP region was found when the entire data set was analyzed. However, weak evidence for linkage to HPC1 was observed in the subset of families with male-to-male transmission (n=102; maximum multipoint nonparametric linkage [NPL] 1.99, P=.03). Weak evidence for linkage with heterogeneity within this subset was also observed (HLOD 1.21, P=.02), with approximately 20% of families linked. Although not statistically significant, suggestive evidence for linkage to PCAP was observed for the families (n=21) that met the three criteria of male-to-male transmission, average age of diagnosis <66 years, and >/=5 affected individuals (maximum multipoint NPL 1.45, P=.08). There was no evidence for linkage to CAPB in the brain cancer-prostate cancer subset. These results strengthen the argument that prostate cancer is a heterogeneous disease and that multiple genetic and environmental factors may be important for its etiology.  相似文献   

15.
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is one of the most common congenital facial defects, with an incidence of 1 in 700-1,000 live births among individuals of European descent. Several linkage and association studies of NSCL/P have suggested numerous candidate genes and genomic regions. A genomewide linkage analysis of a large multigenerational family (UR410) with NSCL/P was performed using a single-nucleotide-polymorphism array. Nonparametric linkage (NPL) analysis provided significant evidence of linkage for marker rs728683 on chromosome 18q21.1 (NPL=43.33 and P=.000061; nonparametric LOD=3.97 and P=.00001). Parametric linkage analysis with a dominant mode of inheritance and reduced penetrance resulted in a maximum LOD score of 3.61 at position 47.4 Mb on chromosome 18q21.1. Haplotype analysis with informative crossovers defined a 5.7-Mb genomic region spanned by proximal marker rs1824683 (42,403,918 bp) and distal marker rs768206 (48,132,862 bp). Thus, a novel genomic region on 18q21.1 was identified that most likely harbors a high-risk variant for NSCL/P in this family; we propose to name this locus "OFC11" (orofacial cleft 11).  相似文献   

16.
A susceptibility locus for migraine with aura, on chromosome 4q24   总被引:18,自引:0,他引:18  
Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.  相似文献   

17.
We present the first genomewide interaction and locus-heterogeneity linkage scan in bipolar affective disorder (BPAD), using a large linkage data set (52 families of European descent; 448 participants and 259 affected individuals). Our results provide the strongest interaction evidence between BPAD genes on chromosomes 2q22-q24 and 6q23-q24, which was observed symmetrically in both directions (nonparametric LOD [NPL] scores of 7.55 on 2q and 7.63 on 6q; P<.0001 and P=.0001, respectively, after a genomewide permutation procedure). The second-best BPAD interaction evidence was observed between chromosomes 2q22-q24 and 15q26. Here, we also observed a symmetrical interaction (NPL scores of 6.26 on 2q and 4.59 on 15q; P=.0057 and .0022, respectively). We covered the implicated regions by genotyping additional marker sets and performed a detailed interaction linkage analysis, which narrowed the susceptibility intervals. Although the heterogeneity analysis produced less impressive results (highest NPL score of 3.32) and a less consistent picture, we achieved evidence of locus heterogeneity at chromosomes 2q, 6p, 11p, 13q, and 22q, which was supported by adjacent markers within each region and by previously reported BPAD linkage findings. Our results provide systematic insights in the framework of BPAD epistasis and locus heterogeneity, which should facilitate gene identification by the use of more-comprehensive cloning strategies.  相似文献   

18.
Although there is considerable evidence for a strong genetic component to idiopathic autism, several genomewide screens for susceptibility genes have been performed with limited concordance of linked loci, reflecting either numerous genes of weak effect and/or sample heterogeneity. Because decreasing sample heterogeneity would increase the power to identify genes, the effect on evidence for linkage of restricting a sample of autism-affected relative pairs to those with delayed onset (at age >36 mo) of phrase speech (PSD, for phrase speech delay) was studied. In the second stage of a two-stage genome screen for susceptibility loci involving 95 families with two or more individuals with autism or related disorders, a maximal multipoint heterogeneity LOD score (HLOD) of 1.96 and a maximal multipoint nonparametric linkage (NPL) score of 2.39 was seen on chromosome 2q. Restricting the analysis to the subset of families (n=49) with two or more individuals having a narrow diagnosis of autism and PSD generated a maximal multipoint HLOD score of 2.99 and an NPL score of 3.32. The increased scores in the restricted sample, together with evidence for heterogeneity in the entire sample, indicate that the restricted sample comprises a population that is more genetically homogeneous, which could therefore increase the likelihood of positional cloning of susceptibility loci.  相似文献   

19.
Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from unilateral to bilateral CL-P. A genomewide linkage scan that used approximately 10,000 SNPs was performed. Nonparametric linkage (NPL) analysis identified 11 genomic regions (NPL>3.5; P<.005) that could potentially harbor CL-P susceptibility variations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756 (NPL=5.57; P=.00024). This was also supported by parametric linkage; MOD score (LOD scores maximized over genetic model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity LOD was 4.45 (alpha =100%). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to a region of approximately 20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families.  相似文献   

20.
Since little is known about chromosomal locations harboring type 2 diabetes-susceptibility genes, we conducted a genomewide scan for such genes in a Mexican American population. We used data from 27 low-income extended Mexican American pedigrees consisting of 440 individuals for whom genotypic data are available for 379 markers. We used a variance-components technique to conduct multipoint linkage analyses for two phenotypes: type 2 diabetes (a discrete trait) and age at onset of diabetes (a truncated quantitative trait). For the multipoint analyses, a subset of 295 markers was selected on the basis of optimal spacing and informativeness. We found significant evidence that a susceptibility locus near the marker D10S587 on chromosome 10q influences age at onset of diabetes (LOD score 3.75) and is also linked with type 2 diabetes itself (LOD score 2.88). This susceptibility locus explains 63.8%+/-9.9% (P=. 000016) of the total phenotypic variation in age at onset of diabetes and 65.7%+/-10.9% (P=.000135) of the total variation in liability to type 2 diabetes. Weaker evidence was found for linkage of diabetes and of age at onset to regions on chromosomes 3p, 4q, and 9p. In conclusion, our strongest evidence for linkage to both age at onset of diabetes and type 2 diabetes itself in the Mexican American population was for a region on chromosome 10q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号