首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice homozygous for the hypomorphic allele Eya1 ( bor ) exhibit cochlear aplasia, with associated deafness, and renal hypoplasia, similar to Branchio-Oto-Renal syndrome (BOR) in humans. Although much is known about the genetics of the disease, little is known about the factors that modify its phenotypic expression. We have recently detailed two modifier loci (Mead1 and Mead2) in a C3HeB/FeJ-Eya1 ( bor/+ ) x C57BL/6 J intercross that suppress the ear-related phenotypes in our hypomorphic mutants. In this study we report corroborating evidence for our initial finding with the identification of two modifier loci mapping to the same region in CAST/EiJ and BALB/cJ. Furthermore, we describe an additional locus (Mead3) on chromosome 19 in CAST/EiJ, within which the previously cloned suppressor Nxf1 resides. The suppression effect on cochlear coiling was studied on congenic line(s) for each protective allele. The penetrance and suppressor strength of these alleles vary by strain and locus. Eya1 ( bor/bor ) hypomorphs, when homozygous for each of the three protective alleles (CAST/EiJ, C57BL/6 J, or BALB/cJ) at the Mead1 or Mead2 locus, exhibit completely penetrant suppression of cochlear agenesis. At the Mead1 locus, the C57BL/6 J and BALB/cJ alleles have comparable strengths. At the Mead2 locus, the C57BL/6 J and CAST/EiJ alleles have comparable strengths. In contrast, mice with genotype Eya1 ( bor/bor )Mead3(CAST/CAST) exhibit incomplete penetrance (50%) and a wide range of cochlear coiling (1/4-1(1/2) turns). The identification of these additional modifier alleles could provide crucial clues for evaluating the candidate genes.  相似文献   

2.
Dominant mutations of transmembrane channel-like gene 1 (TMC1) cause progressive sensorineural hearing loss in humans and Beethoven (Tmc1Bth/+) mice. Here we show that Tmc1Bth/+ mice on a C3HeB/FeJ strain background have selective degeneration of inner hair cells while outer hair cells remain structurally and functionally intact. Inner hair cells primarily function as afferent sensory cells, whereas outer hair cells are electromotile amplifiers of auditory stimuli that can be functionally assessed by distortion product otoacoustic emission (DPOAE) analysis. When C3H-Tmc1Bth/Bth is crossed with either C57BL/6J or DBA/2J wild-type mice, F1 hybrid Tmc1Bth/+ progeny have increased hearing loss associated with increased degeneration of outer hair cells and diminution of DPOAE amplitudes but no difference in degeneration of inner hair cells. We mapped at least one quantitative trait locus (QTL), Tmc1m1, for DPOAE amplitude on chromosome 2 in [(C/B)F1xC]N2-Tmc1Bth/+ backcross progeny, and three other QTL on chromosomes 11 (Tmc1m2), 12 (Tmc1m3), and 5 (Tmc1m4) in [(C/D)F1xC]N2-Tmc1Bth/+ progeny. The polygenic basis of outer hair cell degeneration in Beethoven mice provides a model system for the dissection of common, complex hearing loss phenotypes, such as presbycusis, that involve outer hair cell degeneration in humans.  相似文献   

3.
Pou4f2 acts as a key node in the comprehensive and step‐wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2‐green fluorescent protein (GFP) fusion protein expressed in RGCs. Co‐localization of POU4F2 and GFP in the retina and brain of Pou4f2‐GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild‐type mice, the expression patterns of POU4F2 and POU4F1 and the co‐expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2‐GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2‐GFP/GFP homozygote and wild‐type mice. These results demonstrated that the development of RGCs in Pou4f2‐GFP/GFP homozygote mice was the same as in wild‐type mice. Thus, the present Pou4f2‐GFP knock‐in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs.  相似文献   

4.
The human ortholog of the gene responsible for audiogenic seizure susceptibility in Frings and BUB/BnJ mice (mouse gene symbol Mass1) recently was shown to underlie Usher syndrome type IIC (USH2C). Here we report that the Mass1frings mutation is responsible for the early onset hearing impairment of BUB/BnJ mice. We found highly significant linkage of Mass1 with ABR threshold variation among mice from two backcrosses involving BUB/BnJ mice with mice of strains CAST/EiJ and MOLD/RkJ. We also show an additive effect of the Cdh23 locus in modulating the progression of hearing loss in backcross mice. Together, these two loci account for more than 70% of the total ABR threshold variation among the backcross mice at all ages. The modifying effect of the strain-specific Cdh23ahl variant may account for the hearing and audiogenic seizure differences observed between Frings and BUB/BnJ mice, which share the Mass1frings mutation. During postnatal cochlear development in BUB/BnJ mice, stereocilia bundles develop abnormally and remain immature and splayed into adulthood, corresponding with the early onset hearing impairment associated with Mass1frings. Progressive base-apex hair cell degeneration occurs at older ages, corresponding with the age-related hearing loss associated with Cdh23ahl. The molecular basis and pathophysiology of hearing loss suggest BUB/BnJ and Frings mice as models to study cellular and molecular mechanisms underlying USH2C auditory pathology.  相似文献   

5.
Neuroendocrine (NE) differentiation has gained increased attention as a prostate cancer (PC) prognostic marker. The aim of this study is to determine whether host germline genetic variation influences tumor progression and metastasis in C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of aggressive NEPC. TRAMP mice were crossed to the eight progenitor strains of the Collaborative Cross recombinant inbred panel to address this. Tumor growth and metastasis burden were quantified in heterozygous transgene positive F1 male mice at 30 weeks of age. Compared to wild-type C57BL/6J-Tg(TRAMP)824Ng/J males, TRAMP x CAST/EiJ, TRAMP x NOD/ShiLtJ and TRAMP x NZO/HlLtJ F1 males displayed significant increases in tumor growth. Conversely, TRAMP x WSB/EiJ and TRAMP x PWK/PhJ F1 males displayed significant reductions in tumor growth. Interestingly, despite reduced tumor burden, TRAMP x WSB/EiJ males had an increased nodal metastasis burden. Patterns of distant pulmonary metastasis tended to follow the same patterns as that of local dissemination in each of the strains. All tumors and metastases displayed positive staining for NE markers, synaptophysin, and FOXA2. These experiments conclusively demonstrate that the introduction of germline variation by breeding modulates tumor growth, local metastasis burden, and distant metastasis frequency in this model of NEPC. These strains will be useful as model systems to facilitate the identification of germline modifier genes that promote the development of aggressive forms of PC.  相似文献   

6.
The hypermuscular Compact phenotype was first noted in a line of mice selected for high body weight and protein content. A new line, based on mice showing the Compact phenotype, was formed and selected for maximum expression of the Compact phenotype. Previously we mapped and identified a 12-bp deletion in the myostatin gene, denoted Mstn(Cmpt-dl1Abc), which can be considered as a major gene responsible for the hypermuscular phenotype. Genetic analysis revealed that full expression of the hypermuscular phenotype requires the action of modifier loci in addition to Mstn(Cmpt-dl1Abc). To map these modifier loci, an interspecific F(2) population was generated between Comp9, an inbred line homozygous for Mstn(Cmpt-dl1Abc), and CAST/Ei, an inbred line generated from Mus musculus castaneus. Selective DNA pooling and genotyping, separately by gender, was carried out within a subpopulation of the F(2) consisting of individuals homozygous for Mstn(Cmpt-dl1Abc). Significant association with hypermuscularity at a false discovery rate (FDR) of 0.05 was found for markers on chromosomes 3, 5, 7, 11, 16, and X. In all cases, the marker allele derived from the Comp9 parent showed a higher frequency in the hypermuscular group and the CAST/Ei allele in the normal group. The modifier loci apparently exerted their effects on muscularity only in the presence of Mstn(Cmpt-dl1Abc).  相似文献   

7.
Females but not males of the low-lymphoma RF/J strain transmit a non-Mendelian factor which suppresses the development of lymphoma in F1 crosses with mice of the high-lymphoma AKR/J strain. Suppression of lymphoma was also evident in the first backcross generation to the parental AKR strain, but only when (RF female x AKR male)F1 mice had been the female parent. This "maternal resistance factor" was transmitted independently of the dominant, lymphoma-suppressing Fv-1n allele transmitted by both males and females of the RF strain, but the suppressive capacities of the two factors appeared to be additive. In this cross, F1 progeny of RF females also showed marked suppression of ecotropic murine leukemia virus expression by comparison with mice of the reciprocal F1 cross, but this suppression of virus expression was not detected in the lymphoma-suppressed AKR backcross population. The observation of lymphoma suppression in the absence of ectropic virus suppression in mice of the (RF X AKR)F1 female x AKR male backross generation indicates a qualitative or quantitative difference in the determination of these two effects.  相似文献   

8.
DFN3, the most prevalent X-linked hearing loss, is caused by mutations in the POU3F4 gene. Previous studies in Pou3f4 knockout mice suggest that defective otic fibrocytes in the spiral ligament of the cochlear lateral wall may underlie the hearing loss in DFN3. To better understand the pathological mechanisms of the DFN3 hearing loss, we analyzed inner ears of Pou3f4-deficient mice during development. Our results indicate that compartmentalization of the spiral ligament mesenchyme setting up boundaries for specific otic fibrocytes occurs normally in Pou3f4-deficient cochlea. However, differentiation of the compartmentalized mesenchyme into specific otic fibrocytes was blocked in the absence of Pou3f4 function. In addition, we found that stria vascularis in the cochlear lateral wall was also affected in Pou3f4-deficient cochlea. Unlike the otic fibrocytes, differentiation of stria vascularis was completed in the absence of Pou3f4 function, yet expression of Kir4.1 channels in the strial intermediate cells, essential for the sound transduction, was lost afterwards. These results suggest that Pou3f4 deficiency causes defects in both otic fibrocytes and stria vascularis at different developmental stages and by different pathological mechanisms, which may account for the progressive nature of DFN3 hearing loss.  相似文献   

9.
Earl PL  Americo JL  Moss B 《Journal of virology》2012,86(17):9105-9112
Monkeypox virus (MPXV) is endemic in Africa, where it causes disease in humans resembling smallpox. A recent importation of MPXV-infected animals into the United States raises the possibility of global spread. Rodents comprise the major reservoir of MPXV, and a variety of such animals, even those native to North America, are susceptible. In contrast, common inbred strains of mice, including BALB/c and C57BL/6, are greatly resistant to MPXV. However, several inbred strains of mice derived from wild mice, including CAST/EiJ, exhibit morbidity and mortality at relatively low inoculums of MPXV. Elucidating the basis for the susceptibility of CAST/EiJ mice could contribute to an understanding of MPXV pathogenicity and host defense mechanisms and enhance the value of this mouse strain as a model system for evaluation of therapeutics and vaccines. Here we compared virus dissemination and induced cytokine production in CAST/EiJ mice to those in the resistant BALB/c strain. Following intranasal infection, robust virus replication occurred in the lungs of both strains, although a relatively higher inoculum was required for BALB/c. However, while spread to other internal organs was rapid and efficient in CAST/EiJ mice, the virus was largely restricted to the lungs in BALB/c mice. Gamma interferon (IFN-γ) and CCL5 were induced in lungs of BALB/c mice concomitant with virus replication but not in CAST/EiJ mice. The importance of IFN-γ in protection against MPXV disease was demonstrated by the intranasal administration of the mouse cytokine to CAST/EiJ mice and the resulting protection against MPXV. Furthermore, C57BL/6 mice with inactivation of the IFN-γ gene or the IFN-γ receptor gene exhibited enhanced sensitivity to MPXV.  相似文献   

10.
Meiotic recombination is required for the orderly segregation of chromosomes during meiosis and for providing genetic diversity among offspring. Among mammals, as well as yeast and higher plants, recombination preferentially occurs at highly delimited chromosomal sites 1–2 kb long known as hotspots. Although considerable progress has been made in understanding the roles various proteins play in carrying out the molecular events of the recombination process, relatively little is understood about the factors controlling the location and relative activity of mammalian recombination hotspots. To search for trans-acting factors controlling the positioning of recombination events, we compared the locations of crossovers arising in an 8-Mb segment of a 100-Mb region of mouse Chromosome 1 (Chr 1) when the longer region was heterozygous C57BL/6J (B6) × CAST/EiJ (CAST) and the remainder of the genome was either similarly heterozygous or entirely homozygous B6. The lack of CAST alleles in the remainder of the genome resulted in profound changes in hotspot activity in both females and males. Recombination activity was lost at several hotspots; new, previously undetected hotspots appeared; and still other hotspots remained unaffected, indicating the presence of distant trans-acting gene(s) whose CAST allele(s) activate or suppress the activity of specific hotspots. Testing the activity of three activated hotspots in sperm samples from individual male progeny of two genetic crosses, we identified a single trans-acting regulator of hotspot activity, designated Rcr1, that is located in a 5.30-Mb interval (11.74–17.04 Mb) on Chr 17. Using an Escherichia coli cloning assay to characterize the molecular products of recombination at two of these hotspots, we found that Rcr1 controls the appearance of both crossover and noncrossover gene conversion events, indicating that it likely controls the sites of the double-strand DNA breaks that initiate the recombination process.  相似文献   

11.
12.
Objective:To examine whether genetic variability plays a role in skeletal muscle response to disuse.Methods:We examined skeletal muscle response to disuse in five different strains of mice: CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, 129S1/SvImJ and A/J. Mice had one limb immobilized by a cast for three weeks.Results:Response to immobilization was dependent on the strain of mice. Skeletal muscle mass/body weight was decreased by immobilization in all strains except 1291/SvImJ. Immobilization decreased absolute skeletal muscle mass in quadriceps and gastrocnemius in NOD/ShiltJ and NZO/HILtJ mice. Three weeks of immobilization resulted in an increase in quadriceps levels of atrogenes in CAST/EiJ. Immobilization resulted in an increase in quadriceps and gastrocnemius levels of Myh4 in CAST/EiJ. A similar trend was observed for Myh7 in gastrocnemius muscle. Immobilization resulted in a decrease of the p-p70S6K1/total p706SK1 ratio in quadriceps of NOD/ShiLtJ mice and the gastrocnemius of A/J mice. Immobilization did not affect the p-4EBP1/total 4EBP1 ratio in quadriceps of any of the strains examined. However, the p-4EBP1/total 4EBP1 ratio in gastrocnemius was greater in immobilized, relative to control, limbs in CAST/EiJ mice.Conclusion:Genetic variability affects the response of skeletal muscle to disuse.  相似文献   

13.
Pregnancy-associated murine protein-1 (PAMP-1) could not be detected in peripheral blood of female dwarf mice (genotype dw/dw of the DW strain). By contrast the normal size females of the DW strain (genotypes +/+ and +/dw) had PAMP-1 serum levels of 18.9 AU +/- 15.7 AU/ml. Following administration of biosynthetic human growth hormone (hGH) every 2 h for 52 h PAMP-1 was detected in all dwarf females at concentrations of 16.0 AU +/- 3.3 AU/ml. The albumin levels in the circulation of DW females of normal size were significantly higher (P less than 0.05) than those of DW dwarfs, and the hGH administration did not change the serum albumin levels. The present experiment adds weight to the suggestion that the PAMP-1 serum level is regulated by GH.  相似文献   

14.
Polycystic kidney disease (PKD) is a genetically heterogeneous disorder. In addition to the many PKD-causative loci mapped in mouse and human, a number of reports indicate that modifier loci greatly influence the course of disease progression. Recently we reported a new mouse mutation, kat2J, on chromosome (Chr) 8 that causes late-onset PKD and anemia. During the mapping studies it was noted that the severity of PKD in the mutant (C57BL/6J-kat2J/+ x CAST/Ei)F2 generation was more variable than that in the parental C57BL/6J strain. This suggested that genetic background or modifier genes alter the clinical manifestations and progression of PKD. Genome scans using molecular markers revealed three loci that affect the severity of PKD. The CAST-derived modifier on Chr 1 affects both kidney weight and hematocrit. The CAST-derived modifier on Chr 19 affects kidney weight, and the C57BL/6J-derived modifier on Chr 2 affects hematocrit. Additional modifier loci are noted that interact with and modulate the effects of these three loci. The mapping of these modifier genes and their eventual identification will help to uncover factors that can delay disease progression. These, in turn, could be used to design suitable modes of therapy for various forms of human PKD.  相似文献   

15.
Inheritance of T-associated sex reversal in mice   总被引:2,自引:0,他引:2  
We previously identified a primary sex-determining locus, Tas, on mouse Chr 17 that causes ovarian tissue development in C57BL/6J Thp/+ and TOrl/+ individuals if the AKR/JY chromosome is present. We hypothesized that Tas is located within the region of Chr 17 deleted by Thp and TOrl and that C57BL/6J carries a diagnostic Tas allele, based on the observation that ovarian tissue develops in XY mice when Thp is on a C57BL/6J inbred strain background, whereas normal testicular development occurs when Thp is on a C3H/HeSnJ inbred strain background. To test this hypothesis, we mated (C57BL/6J x C3H/HeSnJ)F1 females to C57BL/6J Thp/+ hermaphrodites. As expected, half of the XY Thp/+ offspring developed ovarian and testicular tissue while half developed exclusively testicular tissue. Unexpectedly, the inheritance of selected Chr 17 molecular loci was independent of gonadal development, as half of the male and hermaphroditic offspring inherited C3H/HeSnJ-derived Chr 17 loci and half inherited C57BL/6J-derived Chr 17 loci. We conclude that for ovarian tissue to develop in an XY Thp/+ or XY TOrl/+ individual (1) Tas must be present in a hemizygous state, which is accomplished by heterozygosity for the Thp or TOrl deletions; (2) the AKR/J-derived Y chromosome must be present; and (3) an additional locus involved in primary sex determination must be present in a homozygous C57BL/6J state. This newly identified gene may be one of the previously defined loci, tda-1 or tda-2.  相似文献   

16.
17.
The retinal degeneration 7 (rd7) mouse, lacking expression of the Nr2e3 gene, exhibits retinal dysplasia and a slow, progressive degeneration due to an abnormal production of blue opsin-expressing cone cells. In this study we evaluated three strains of mice to identify alleles that would slow or ameliorate the retinal degeneration observed in Nr2e3 rd7/rd7 mice. Our studies reveal that genetic background greatly influences the expression of the Nr2e3 rd7/rd7 phenotype and that the inbred mouse strains CAST/EiJ, AKR/J, and NOD.NON-H2 nb1 carry alleles that confer resistance to Nr2e3 rd7/rd7 -induced retinal degeneration. B6.Cg-Nr2e3 rd7/rd7 mice were outcrossed to each strain and the F1 progeny were intercrossed to produce F2 mice. In each intercross, 20–24% of the total F2 progeny were homozygous for the Nr2e3 rd7/rd7 mutation in a mixed genetic background; approximately 28–48% of the Nr2e3 rd7/rd7 homozygotes were suppressed for the degenerative retina phenotype in a mixed genetic background. The suppressed mice had no retinal spots and normal retinal morphology with a normal complement of blue opsin-expressing cone cells. An initial genome scan revealed a significant association of the suppressed phenotype with loci on chromosomes 8 and 19 with the CAST/EiJ background, two marginal loci on chromosomes 7 and 11 with the AKR/J background, and no significant QTL with the NOD.NON-H2 nb1 background. We did not observe any significant epistatic effects in this study. Our results suggest that there are several genes that are likely to act in the same or parallel pathway as NR2E3 that can rescue the Nr2e3 rd7/rd7 phenotype and may serve as potential therapeutic targets. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A GAG deletion in the DYT1 gene is a major cause of early-onset dystonia, but clinical disease expression occurs in only 30% of mutation carriers. To gain insight into genetic factors that may influence penetrance, we evaluated three DYT1 single-nucleotide polymorphisms, including D216H, a coding-sequence variation that moderates the effects of the DYT1 GAG deletion in cellular models. We tested DYT1 GAG-deletion carriers with (n=119) and without (n=113) clinical signs of dystonia and control individuals (n=197) and found the frequency of the 216H allele to be increased in GAG-deletion carriers without dystonia and to be decreased in carriers with dystonia, compared with the control individuals. Analysis of haplotypes demonstrated a highly protective effect of the H allele in trans with the GAG deletion; there was also suggestive evidence that the D216 allele in cis is required for the disease to be penetrant. Our findings establish, for the first time, a clinically relevant gene modifier of DYT1.  相似文献   

19.
Mice with the H-2b major histocompatibility complex haplotype are high immune responders to nicotinic acetylcholine receptors (AChR), whereas mice with the H-2k haplotype are generally low responders. F1 progeny of C57BL/6 (H-2b) mice crossed with mice of most H-2k strains are high responders to AChR in standard conditions of testing helper T cell proliferation in vitro (4 X 10(5) lymph node cells/microwell, 1 wk after primary challenge in vivo). In contrast, the F1 progeny of AKR/J (H-2k) crossed with high responder (H-2b) strains (B6, A.BY, or C3H.SW) were all hyporesponsive to AChR when lymphocytes were tested at 4 X 10(5) cells/well. However, at a density of 1 X 10(6) or greater/well, a high level of antigen-specific responsiveness was demonstrable in the F1 hybrid lymphocytes. A shift from low to high responsiveness to AChR at high cell densities was observed also in the H-2b strain AKR.B6. Other strains previously demonstrated to be low responders to AChR did not become responsive to AChR when lymphocyte numbers were increased to 1.4 X 10(6)/well. The N2 generation yielded by backcrossing (AKR X B6)F1 mice to AKR/J were all low responders, whereas N2 progeny derived by backcrossing F1 to B6 were high or low responders in a ratio of approximately 1:1 (independent of their H-2 phenotype). Results consistent with this observation were obtained in (AKR X B6) F2 mice. These data suggest that at least one AKR/J gene outside of the H-2 complex exerts a hyporesponsive influence on the I-A-dependent helper T cell response to AChR in H-2b mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号