首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminal catalytic module of β-mannanase TrMan5A from the filamentous fungus Trichoderma reesei is classified into family 5 of glycoside hydrolases. It is further classified in clan A with a (β/α)8 barrel configuration and has two catalytic glutamates (E169 and E276). It has at least five other residues conserved in family 5. Sequence alignment revealed that an arginine (R171 in TrMan5A) is semi-conserved among β-mannanases in family 5. In a previously published mannobiose complex structure, this residue is positioned in hydrogen bonding distance from the C2 hydroxyl group of the mannose residue bound at the +2 subsite. To study the function of R171, mutants of this residue were constructed. The results show that arginine 171 is important for substrate binding and transglycosylation. A mutant of TrMan5A with the substitution R171K displayed retained activity on polymeric galactomannan but reduced activity on oligosaccharides due to an increase of Km. While the wild-type enzyme produces mannobiose as dominant product from mannotetraose the R171K mutant shows an altered product profile, producing mannotriose and mannose. The cleavage pattern of mannotetraose was analysed with a method using isotope labelled water (H218O) and mass spectrometry which showed that the preferred productive binding mode of mannotetraose was shifted from subsite ?2 to +2 in the wild-type to subsite ?3 to +1 in the R171K mutant. Significant differences in product formation after manno-oligosaccharide incubation showed that the wild-type enzyme can perform transglycosylation on to saccharide acceptors while the R171K mutant cannot, likely due to loss of acceptor affinity. Interestingly, both enzymes show the ability to perform alcoholysis reactions with methanol and butanol, forming new β-linked glyco-conjugates. Furthermore, it appears that the wild-type enzyme produces mainly mannobiose conjugates using M4 as substrate, while in contrast the R171K mutant produces mainly mannotriose conjugates, due to the altered subsite binding.  相似文献   

2.
Organophosphorus insecticides and nerve agents irreversibly inhibit serine hydrolase superfamily enzymes. One enzyme of this superfamily, the industrially important (for β-lactam antibiotic synthesis) AXE/CAH (acetyl xylan esterase/cephalosporin acetyl hydrolase) from the biotechnologically valuable organism Bacillus pumilus, exhibits low sensitivity to the organophosphate paraoxon (diethyl-p-nitrophenyl phosphate, also called paraoxon-ethyl), reflected in a high K(i) for it (~5 mM) and in a slow formation (t(?)~1 min) of the covalent adduct of the enzyme and for DEP (E-DEP, enzyme-diethyl phosphate, i.e. enzyme-paraoxon). The crystal structure of the E-DEP complex determined at 2.7 ? resolution (1 ?=0.1 nm) reveals strain in the active Ser1?1-bound organophosphate as a likely cause for the limited paraoxon sensitivity. The strain results from active-site-size limitation imposed by bulky conserved aromatic residues that may exclude as substrates esters having acyl groups larger than acetate. Interestingly, in the doughnut-like homohexamer of the enzyme, the six active sites are confined within a central chamber formed between two 60°-staggered trimers. The exclusive access to this chamber through a hole around the three-fold axis possibly limits the size of the xylan natural substrates. The enzyme provides a rigid scaffold for catalysis, as reflected in the lack of movement associated with paraoxon adduct formation, as revealed by comparing this adduct structure with that also determined in the present study at 1.9 ? resolution for the paraoxon-free enzyme.  相似文献   

3.
The β-hydroxyacid dehydrogenases are a structurally conserved family of enzymes that catalyze the NAD+ or NADP+-dependent oxidation of specific β-hydroxyacid substrates like β-hydroxyisobutyrate. These enzymes share distinct domains of amino acid sequence homology, most of which now have assigned putative functions. 6-phosphogluconate dehydrogenase and β-hydroxyisobutyrate dehydrogenase, the most well-characterized members, both appear to be readily inactivated by chemical modifiers of lysine residues, such as 2,4,6-trinitrobenzene sulfonate (TNBS). Peptide mapping by ESI-LCMS showed that inactivation of β-hydroxyisobutyrate dehydrogenase with TNBS occurs with the labeling of a single lysine residue, K248. This lysine residue is completely conserved in all family members and may have structural importance relating to cofactor binding. The structural framework of the β-hydroxyacid dehydrogenase family is shared by many bacterial homologues. One such homologue from E. coli has been cloned and expressed as recombinant protein. This protein was found to have enzymatic activity characteristic of tartronate semialdehyde reductase, an enzyme required for bacterial biosynthesis of d-glycerate. A homologue from H. influenzae was also cloned and expressed as recombinant protein. This protein was active in the oxidation of d-glycerate, but showed approximately ten-fold higher activity with four carbon substrates like β-d-hydroxybutyrate and d-threonine. This enzyme might function in H. influenzae, and other species, in the utilization of polyhydroxybutyrates, an energy storage form specific to bacteria. Cloning and characterization of these bacterial β-hydroxyacid dehydrogenases extends our knowledge of this enzyme family.  相似文献   

4.
The intracellular enzyme dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) from Pseudomonas aeruginosa is a potential drug target because it is essential for the growth of bacteria while it is absent in humans. Therefore, in order to design new compounds using structure based approach for inhibiting the function of DHDPS from P. aeruginosa (Ps), we have cloned, characterized biochemically and biophysically and have determined its three-dimensional structure. The gene encoding DHDPS (dapA) was cloned in a vector pET-28c(+) and the recombinant protein was overexpressed in the Escherichia coli host. The K(m) values of the recombinant enzyme estimated for the substrates, pyruvate and (S)-aspartate-β-semialdehyde [(S)-ASA] were found to be 0.90±0.13 mM and 0.17±0.02 mM, respectively. The circular dichroism studies showed that the enzyme adopts a characteristic β/α conformation which is retained up to 65°C. The fluorescence data indicated the presence of exposed tryptophan residues in the enzyme. The three-dimensional structure determination showed that DHDPS forms a homodimer which is stabilized by several hydrogen bonds and van der Waals forces at the interface. The active site formed with residues Thr44, Tyr107 and Tyr133 is found to be stereochemically suitable for catalytic function. It may be noted that Tyr107 of the catalytic triad belongs to the partner molecule in the dimer. The structure of the complex of PsDHDPS with (S)-lysine determined at 2.65 ? resolution revealed the positions of three lysine molecules bound to the protein.  相似文献   

5.
Molecular evolution has always been a subject of discussions, and researchers are interested in understanding how proteins with similar scaffolds can catalyze different reactions. In the superfamily of serine penicillin-recognizing enzymes, d-alanyl-d-alanine peptidases and β-lactamases are phylogenetically linked but feature large differences of reactivity towards their respective substrates. In particular, while β-lactamases hydrolyze penicillins very fast, leading to their inactivation, these molecules inhibit d-alanyl-d-alanine peptidases by forming stable covalent penicilloyl enzymes. In cyanobacteria, we have discovered a new family of penicillin-binding proteins (PBPs) presenting all the sequence features of class A β-lactamases but having a six-amino-acid deletion in the conserved Ω-loop and lacking the essential Glu166 known to be involved in the penicillin hydrolysis mechanism. With the aim of evolving a member of this family into a β-lactamase, PBP-A from Thermosynechococcus elongatus has been chosen because of its thermostability. Based on sequence alignments, introduction of a glutamate in position 158 of the shorter Ω-loop afforded an enzyme with a 50-fold increase in the rate of penicillin hydrolysis. The crystal structures of PBP-A in the free and penicilloylated forms at 1.9 Å resolution and of L158E mutant at 1.5 Å resolution were also solved, giving insights in the catalytic mechanism of the proteins. Since all the active-site elements of PBP-A-L158E, including an essential water molecule, are almost perfectly superimposed with those of a class A β-lactamase such as TEM-1, the question why our mutant is still 5 orders of magnitude less active as a penicillinase remains and our results emphasize how far we are from understanding the secrets of enzymes. Based on the few minor differences between the active sites of PBP-A and TEM-1, mutations were introduced in the L158E enzyme, but while activities on d-Ala-d-Ala mimicking substrates were severely impaired, further improvement in penicillinase activity was unsuccessful.  相似文献   

6.
Escherichia coli PBP5, a DD-carboxypeptidase (DD-CPase), helps in maintaining cell shape and intrinsic β-lactam resistance. Though PBP5 does not have β-lactamase activity under physiological pH, it has a common but shorter Ω-like loop resembling class A β-lactamases. However, such Ω-like loop lacks the key glutamic acid residue that is present in β-lactamases. It is speculated that β-lactamases and DD-CPases might have undergone divergent evolution leading to distinct enzymes with different substrate specificities and functions indicating the versatility of the Ω-loops. Nonetheless, direct experimental evidence favoring the idea is insufficient. Here, aiming to investigate the effect of introducing a glutamic acid residue in the PBP5 Ω-like loop, we substituted A184 to E to create PBP5_A184E. Expression of PBP5_A184E in E. coli ?PBP5 mutant elevates the β-lactam resistance, especially for cephalosporins. However, like PBP5, PBP5_A184E has the ability to complement the aberrantly shaped E. coli septuple PBP mutant indicating an unaffected in vivo DD-CPase activity. Biochemical and bioinformatics analyses have substantiated the dual enzyme nature of the mutated enzyme possessing both DD-CPase and β-lactamase activities. Therefore, substitution of A184 to E of Ω-like loop alone can introduce the cephalosporinase activity in E. coli PBP5 supporting the phenomenon of a single amino acid polymorphism.  相似文献   

7.
Halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) is a valuable tool in the preparation of R enantiomers of epoxides and β-substituted alcohols. In contrast, the halohydrin dehalogenase from Arthrobacter sp. AD2 (HheA) shows a low S enantioselectivity toward most aromatic substrates. Here, three amino acids (V136, L141, and N178) located in the two neighboring active-site loops of HheA were proposed to be the key residues for controlling enantioselectivity. They were subjected to saturation mutagenesis aimed at evolving an S-selective enzyme. This led to the selection of two outstanding mutants (the V136Y/L141G and N178A mutants). The double mutant displayed an inverted enantioselectivity (from S enantioselectivity [E(S)] = 1.7 to R enantioselectivity [E(R)] = 13) toward 2-chloro-1-phenylethanol without compromising enzyme activity. Strikingly, the N178A mutant showed a large enantioselectivity improvement (E(S) > 200) and a 5- to 6-fold-enhanced specific activity toward (S)-2-chloro-1-phenylethanol. Further analysis revealed that those mutations produced some interference for the binding of nonfavored enantiomers which could account for the observed enantioselectivities. Our work demonstrated that those three active-site residues are indeed crucial in modulating the enantioselectivity of HheA and that a semirational design strategy has great potential for rapid creation of novel industrial biocatalysts.  相似文献   

8.
Four hexapeptides of sequence L-Val-L-Tyr-L-Pro-(Asp)-Gly-L-Ala containing D- or L-aspartyl residues in normal or isopeptide linkages have been synthesized by the Merrifield solid-phase method as potential substrates of the erythrocyte protein carboxyl methyltransferase. This enzyme has been shown to catalyze the methylation of D-aspartyl residues in proteins in red blood cell membranes and cytosol. Using a new vapor-phase methanol diffusion assay, we have found that the normal hexapeptides containing either D- or L-aspartyl residues were not substrates for the human erythrocyte methyltransferase. On the other hand, the L-aspartyl isopeptide, in which the glycyl residue was linked in a peptide bond to the beta-carboxyl group of the aspartyl residue, was a substrate for the enzyme with a Km of 6.3 microM and was methylated with a maximal velocity equal to that observed when ovalbumin was used as a methyl acceptor. The enzyme catalyzed the transfer of up to 0.8 mol of methyl groups/mol of this peptide. Of the four synthetic peptides, only the L-isohexapeptide competitively inhibits the methylation of ovalbumin by the erythrocyte enzyme. This peptide also acts as a substrate for both of the purified protein carboxyl methyltransferases I and II which have been previously isolated from bovine brain (Aswad, D. W., and Deight, E. A. (1983) J. Neurochem. 40, 1718-1726). The L-isoaspartyl hexapeptide represents the first defined synthetic substrate for a eucaryotic protein carboxyl methyltransferase. These results demonstrate that these enzymes can not only catalyze the formation of methyl esters at the beta-carboxyl groups of D-aspartyl residues but can also form esters at the alpha-carboxyl groups of isomerized L-aspartyl residues. The implications of these findings for the metabolism of modified proteins are discussed.  相似文献   

9.
The extracellular (1 → 3)-β-d-glucanase [1 → 3)-β-d-glucan glucanohydrolase, EC 3.2.1.6] produced by Rhizopus arrhizus QM 1032 was purified 305-fold in 70% overall yield. This preparation was found to be homogeneous by ultracentrifugation (sedimentation velocity and studies), electrophoresis on acrylamide gel with normal, sodium dodecyl sulfate, and urea-acetic acid gels, and upon isoelectric focusing. The amino acid composition of the enzyme has been determined and it possesses a carbohydrate moiety composed of mannose and galactose (in the ratio ≈5:1) that is linked to the protein through a 2-acetamido-2-deoxyglucose residue. The molecular number was confirmed by electrophoresis on gels of sodium dodecyl sulfate. The enzyme does not posses subunit structure. It hydrolyzes it substrates with retention of configuration and possesses transglycosylating ability. The rates of hydrolysis of a wide variety of substrates were determined, and its action pattern on a series of oligosaccharides containing mized (1 → 3-, (1 → 4)-, and (1 → 6)-β-d-glucopyranosyl residues was investigated. The enzyme favors stretches of β-d-(1 → 3) linkages, but it can hydrolyze β-d-(1 → 4) linkages that are flanked on the non-reducing side with stretches of β-d-(1 → 3) links. The enzyme will not act on (1 → 6)-β-d-glucosyl linkages located in stretches of β-d-(1 → 3) and will not act on (1 → 3) β-d-glycosidic linkages involving sugars other than d-glucose.  相似文献   

10.
Previous studies have indicated the existence of separate binding sites of ubiquitin-protein ligase, E3, specific for basic (Type I) or bulky hydrophobic (Type II) NH2-terminal amino acid residues of proteins. Another class (Type III) of protein substrates appeared to interact with E3 at regions other than the NH2 terminus (Reiss, Y., Kaim, D., and Hershko, A. (1988) J. Biol. Chem. 263, 2693-2698). In the present study we have used affinity chromatography on immobilized protein substrates to examine the question of whether the different binding sites belong to one E3 enzyme, or to different E3 species. Another objective was to develop a procedure for the extensive purification of E3. When a crude extract of reticulocytes is applied to Type I or Type II protein substrates linked to Sepharose, E3 becomes strongly bound to the affinity columns and is not eluted with salt at high concentration. However, the enzyme can be specifically eluted by a dipeptide that has an NH2-terminal residue similar to that of matrix-bound protein substrate. A 350-fold purification is obtained in this single step. Preparations of E3 purified on either Type I or Type II protein substrate affinity columns act on both types of protein substrates, indicating that the separate binding sites for basic and hydrophobic NH2-terminal residues belong to one enzyme. Another species of E3 that acts strongly on some Type III protein substrates does not bind to Type I or Type II protein substrate affinity columns.  相似文献   

11.
The three-dimensional structure of the monomeric bifunctional enzyme N-(5'-phosphoribosyl)anthranilate isomerase:indole-3-glycerol-phosphate synthase from Escherichia coli has been refined at 2.0 A resolution, using oscillation film data obtained from synchrotron radiation. The model includes the complete protein (452 residues), two phosphate ions and 628 water molecules. The final R-factor is 17.3% for all observed data between 15 and 2 A resolution. The root-mean-square deviations from ideal bond lengths and bond angles are 0.010 A and 3.2 degrees, respectively. The structure of N-(5'-phosphoribosyl)anthranilate isomerase: indole-3-glycerol-phosphate synthase from E. coli comprises two beta/alpha-barrel domains that superimpose with a root-mean-square deviation of 2.03 A for 138 C alpha-pairs. The C-terminal domain (residues 256 to 452) catalyses the PRAI reaction and the N-terminal domain (residues 1 to 255) catalyses the IGPS reaction, two sequential steps in tryptophan biosynthesis. The enzyme has the overall shape of a dumb-bell, resulting in a surface area that is considerably larger than normally observed for monomeric proteins of this size. The active sites of the PRAI and the IGPS domains, both located at the C-terminal side of the central beta-barrel, contain equivalent binding sites for the phosphate moieties of the substrates N-(5'-phosphoribosyl) anthranilate and 1-(o-carboxyphenylamino)-1-deoxyribulose-5-phosphate. These two phosphate binding sites are identical with respect to their positions within the tertiary structure of the beta/alpha-barrel, the conformation of the residues involved in phosphate binding and the hydrogen-bonding network between the phosphate ions and the protein. The active site cavities of both domains contain similar hydrophobic pockets that presumably bind the anthranilic acid moieties of the substrates. These similarities of the tertiary structures and the active sites of the two domains provide evidence that N-(5'-phosphoribosyl)anthranilate isomerase:indole-3-glycerol-phosphate synthase from E. coli results from a gene duplication event of a monomeric beta/alpha-barrel ancestor.  相似文献   

12.
High pressure homogenization (HPH) has been proposed as a promising method for changing the activity and stability of enzymes. Therefore, this research studied the activity of β-galactosidase before and after HPH. The enzyme solution at pH values of 6.4, 7.0, and 8.0 was processed at pressures of up to 150?MPa, and the effects of HPH were determined from the residual enzyme activity measured at 5, 30, and 45?°C immediately after homogenization and after 1?day of refrigerated storage. The results indicated that at neutral pH the enzyme remained active at 30?°C (optimum temperature) even after homogenization at pressures of up to 150?MPa. On the contrary, when the β-galactosidase was homogenized at pH 6.4 and 8.0, a gradual loss of activity was observed, reaching a minimum activity (around 30?%) after HPH at 150?MPa and pH 8.0. After storage, only β-galactosidase that underwent HPH at pH 7.0 retained similar activity to the native sample. Thus, HPH did not affect the activity and stability of β-galactosidase only when the process was carried out at neutral pH; for the other conditions, HPH resulted in partial inactivation of the enzyme. Considering the use of β-galactosidase to produce low lactose milk, it was concluded that HPH can be applied with no deleterious effects on enzyme activity.  相似文献   

13.
The xynB1 gene (CCNA 01040) of Caulobacter crescentus that encodes a bifunctional enzyme containing the conserved β-Xylosidase and α-L: -Arabinofuranosidase (β-Xyl I-α-L: -Ara) domains was amplified by PCR and cloned into the vector pJet1.2Blunt. The xynB1 gene was subcloned into the vector pPROEX-hta that produces a histidine-fused translation product. The overexpression of recombinant β-Xyl I-α-L: -Ara was induced with IPTG in BL21 (DE3) and the resulting intracellular protein was purified with pre-packaged nickel-Sepharose columns. The recombinant β-Xyl I-α-L: -Ara exhibited a specific β-Xylosidase I activity of 1.25?U?mg(-1) to oNPX and a specific α-L: -Arabinofuranosidase activity of 0.47?U?mg(-1) to pNPA. The predominant activity of the recombinant enzyme was its β-Xylosidase I activity, and the enzymatic characterization was focused on it. The β-Xylosidase I activity was high over the pH range 3-10, with maximal activity at pH 6. The enzyme activity was optimal at 45?°C, and a high degree of stability was verified over 240?min at this temperature. Moreover, β-Xylosidase activity was inhibited in the presence of the metals Zn(2+) and Cu(2+), and the enzyme exhibited K(M) and V(Max) values of 2.89?±?0.13?mM and 1.4?±?0.04?μM?min(-1) to oNPX, respectively. The modeled structure of β-xylosidase I showed that its active site is highly conserved compared with other structures of the GH43 family. The increase in the number of contact residues responsible for maintaining the dimeric structure indicates that this dimer is more stable than the tetramer form.  相似文献   

14.
A gene encoding β-galactosidase from Bacillus circulans which had hydrolysis specificity for the β1-3 linkage was expressed in Escherichia coli. The β-galactosidase was purified from crude cell lysates of E. coli by column chromatographies on Resource Q and Sephacryl S-200 HR. The enzyme released galactose with high selectivity from oligosaccharides which had terminal β1-3 linked galactose residues. However it did not hydrolyse β1-4 linked galactooligosaccharides. Moreover, Galβ1-3GlcNAc, Galβ1-3GalNAc, and their p-nitrophenyl glycosides were regioselectively synthesized in 10–46% yield by the transglycosylation reaction using this enzyme.  相似文献   

15.
A hyperthermophilic membrane-related β-1,4-endoglucanase (family 5, cellulase) of the archaeon Pyrococcus horikoshii was found to be capable of hydrolysing cellulose at high temperatures. The hyperthermophilic cellulase has promise for applications in biomass utilization. To clarify its detailed function, we determined the crystal structures of mutants of the enzyme in complex with either the substrate or product ligands. We were able to resolve different kinds of complex structures at 1.65-2.01?? (1??=0.1?nm). The structural analysis of various mutant enzymes yielded a sequence of crystallographic snapshots, which could be used to explain the catalytic process of the enzyme. The substrate position is fixed by the alignment of one cellobiose unit between the two aromatic amino acid residues at subsites +1 and +2. During the enzyme reaction, the glucose structure of cellulose substrates is distorted at subsite -1, and the β-1,4-glucoside bond between glucose moieties is twisted between subsites -1 and +1. Subsite -2 specifically recognizes the glucose residue, but recognition by subsites +1 and +2 is loose during the enzyme reaction. This type of recognition is important for creation of the distorted boat form of the substrate at subsite -1. A rare enzyme-substrate complex was observed within the low-activity mutant Y299F, which suggested the existence of a trapped ligand structure before the formation by covalent bonding of the proposed intermediate structure. Analysis of the enzyme-substrate structure suggested that an incoming water molecule, essential for hydrolysis during the retention process, might be introduced to the cleavage position after the cellobiose product at subsites +1 and +2 was released from the active site.  相似文献   

16.
The probiotic bacterium Lactobacillus?reuteri 121 produces two fructosyltransferase enzymes, a levansucrase and an inulosucrase. Although these two fructosyltransferase enzymes share high sequence similarity, they differ significantly in the type and size distribution of fructooligosaccharide products synthesized from sucrose, and in their activity levels. In order to examine the contribution of specific amino acids to such differences, 15 single and four multiple inulosucrase mutants were designed that affected residues that are conserved in inulosucrase enzymes, but not in levansucrase enzymes. The effects of the mutations were interpreted using the 3D structures of Bacillus?subtilis levansucrase (SacB) and Lactobacillus?johnsonii inulosucrase (InuJ). The wild-type inulosucrase synthesizes mostly fructooligosaccharides up to a degree of polymerization of 15 and relatively low amounts of inulin polymer. In contrast, wild-type levansucrase produces mainly levan polymer and fructooligosaccharides with a degree of polymerization < 5. Although most of the inulosucrase mutants in this study behaved similarly to the wild-type enzyme, the mutation G416E, at the rim of the active site pocket in loop 415-423, increased the hydrolytic activity twofold, without significantly changing the transglycosylation activity. The septuple mutant GM4 (T413K, K415R, G416E, A425P, S442N, W486L, P516L), which included two residues from the above-mentioned loop 415-423, synthesized 1-kestose only, but at low efficiency. Mutation A538S, located behind the general acid/base, increased the enzyme activity two to threefold. Mutation N543S, located adjacent to the +1/+2 sub-site residue R544, resulted in synthesis of not such a wide variety of fructooligosaccharides than the wild-type enzyme. The present study demonstrates that the product specificity of inulosucrase is easily altered by protein engineering, obtaining inulosucrase variants with higher transglycosylation specificity, higher catalytic rates and different fructooligosaccharide size distributions, without changing the β(2-1) linkage type in the product.  相似文献   

17.
β-Glycosidase from Thermococcus kodakarensis KOD1 is a hyperthermophilic enzyme with β-glucosidase, β-mannosidase, β-fucosidase and β-galactosidase activities. Sequence alignment with other β-glycosidases from hyperthermophilic archaea showed two unique active site residues, Gln77 and Asp206. These residues were represented by Arg and Asp in all other hyperthermophilic β-glycosidases. The two active site residues were mutated to Q77R, D206N and D206Q, to study the role of these unique active site residues in catalytic activity and to alter the substrate specificity to enhance its β-glucosidase activity. The secondary structure analysis of all the mutants showed no change in their structure and exhibited in similar conformation like wild-type as they all existed in dimer form in an SDS-PAGE under non-reducing conditions. Q77R and D206Q affected the catalytic activity of the enzyme whereas the D206N altered the catalytic turn-over rate for glucosidase and mannosidase activities with fucosidase activity remain unchanged. Gln77 is reported to interact with catalytic nucleophile and Asp206 with axial C2-hydroxyl group of substrates. Q77R might have made some changes in three dimensional structure due to its electrostatic effect and lost its catalytic activity. The extended side chains of D206Q is predicted to affect the substrate binding during catalysis. The high-catalytic turn-over rate by D206N for β-glucosidase activity makes it a useful enzyme in cellulose degradation at high temperatures.  相似文献   

18.
An aryl β-hexosidase was purified 800-fold from bovine liver. The purified enzyme hydrolyzed p-nitrophenyl glycosylpyranoside derivatives of β-d-galactose, β-d-glucose, β-d-xylose, β-d-mannose, and α-l-arabinose, but did not hydrolyze several other p-nitrophenyl glycosides. The enzyme also catalyzed hydrolysis of a variety of plant arylglucosides. Disaccharides, polysaccharides, glycolipids, glycoproteins, and glycosaminoglycans containing terminal nonreducing β-d-galactopyranosyl or β-d-glucopyranosyl residues were not hydrolyzed. The pH optima for the several substrates tested ranged from 7.0 to 9.5. The purified enzyme was homogeneous by disc gel electrophoresis and had a molecular weight of 41,000 by Sephadex gel filtration and 46,000 by disc gel electrophoresis performed in the presence of sodium dodecyl sulfate. The enzyme readily transferred glycosyl residues from susceptible β-galactosides or β-glucosides to other sugars; the resulting products were not hydrolyzed by the enzyme. Methyl α-d-glucopyranoside was the most efficient carbohydrate acceptor compound tested. The enzyme exhibited a Km for p-nitrophenyl β-d-galactopyranoside of 1.78 × 10?3m and for p-nitrophenyl β-d-glucopyranoside, 2.50 × 10?3m when incubations were conducted in the presence of 0.15 m methyl α-d-glucopyranoside. Aryl β-hexosidase was found in the cytosol of all mammalian livers tested, but could not be detected in liver of birds, reptiles, or fish; low levels were detected in frog liver. Analysis of bovine extracts indicated that the enzyme occurred in liver, kidney, and intestinal mucosa; it was not detected in testis, spleen, serum, or muscle.  相似文献   

19.
A number of β-alanine analogues were tested for their ability to inhibit carnosine-synthetase from rat and chick skeletal muscle. Of the analogues tested, 3-aminopropanesulfonic acid (APS) was the most effective inhibitor of enzyme from either source. 5-Aminovaleric acid (5-AV) also inhibited the enzyme from rat, but did not inhibit the enzyme from chick. 2-Aminoethylphosphonic acid and o-phosphoethanolamine had a small amount of inhibitory activity on both rat and chick enzymes, while 3-aminopropanephosphonic acid, aminooxyacetic acid and nipecotic acid had a small amount of inhibitory activity on the rat enzyme only. None of the analogues tested acted as substrates for either enzyme under our conditions. Kinetic data indicated that the inhibition by APS was competitive with respect to β-alanine for both rat and chick enzymes. Inhibition of the rat enzyme by 5-AV was non-competitive with respect to β-alanine for both rat and chick enzymes. Inhibition of the rat enzyme by 5-AV was noncompetitive with respect to β-alanine. APS and 5-AV were also shown to inhibit carnosine-synthetase from rat brain and heart. Chronic injections of either APS or 5-AV failed to produce significant changes in carnosine levels in rat skeletal muscle or brain; however preliminary results indicate that APS injections may produce a lowering of carnosine levels in rat heart.  相似文献   

20.
A new inhibitor, H-Ala-Ile-pyrrolidin-2-yl boronic acid, was developed as an inhibitor against prolyl tripeptidyl aminopeptidase with a Ki value of 88.1 nM. The structure of the prolyl tripeptidyl aminopeptidase complexed with the inhibitor (enzyme-inhibitor complex) was determined at 2.2 Å resolution. The inhibitor was bound to the active site through a covalent bond between Ser603 and the boron atom of the inhibitor. This structure should closely mimic the structure of the reaction intermediate between the enzyme and substrate. We previously proposed that two glutamate residues, Glu205 and Glu636, are involved in the recognition of substrates. In order to clarify the function of these glutamate residues in substrate recognition, three mutant enzymes, E205A, E205Q, and E636A were generated by site-directed mutagenesis. The E205A mutant was expressed as an inclusion body. The E205Q mutant was expressed in soluble form, but no activity was detected. Here, the structures of the E636A mutant and its complex with the inhibitor were determined. The inhibitor was located at almost the same position as in the wild-type enzyme-inhibitor complex. The amino group of the inhibitor interacted with Glu205 and the main-chain carbonyl group of Gln203. In addition, a water molecule in the place of Glu636 of the wild-type enzyme interacted with the amino group of the inhibitor. This water molecule was located near the position of Glu636 in the wild-type and formed a hydrogen bond with Gln203. The kcat/KM values of the E636A mutant toward the two substrates used were smaller than those of the wild-type by two orders of magnitude. The Ki value of our inhibitor for the E636A mutant was 48.8 μM, which was 554-fold higher than that against the wild-type enzyme. Consequently, it was concluded that Glu205 and Glu636 are significant residues for the N-terminal recognition of a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号