首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Recently, high-performance liquid chromatography-tandem mass spectrometry (LC/MS/MS) has become a powerful tool for quantitative confirmatory analysis of drugs of abuse and has begun to spread in the field of forensic toxicology. Guidelines for confirmatory analysis by GC/MS and LC/MS/MS have been published recently by several organizations (WADA, IOC, SOFT, GTFCh, EU). However, these guidelines have not yet been included in procedures for drug analysis with LC/MS/MS. The prerequisites for forensic confirmatory analysis by LC/MS/MS with respect to EU guidelines are chromatographic separation, a minimum number of two MS/MS transitions to obtain the required identification points and predefined thresholds for the variability of the relative intensities of the MS/MS transitions (MRM transitions) in samples and reference standards. LC/MS/MS methods for determination of several classes of drugs of abuse including some basic drugs (opiates, stimulants), cannabinoids and some of their phase-I- and phase-II-metabolites (especially glucuronides) in urine and serum of drug abusers and/or crime offenders or victims have been developed and validated following current recommendations and are presented in this paper. At least two MRM transitions for each substance were monitored to provide sufficient identification of drugs, deuterated analogues of analytes were used as internal standards for quantitation where possible and chromatographic separation has been performed on reversed-phase columns with gradient elution. Validation data obtained and the application to real samples show that the requested criteria for confirmatory analysis of drugs of abuse by EU guidelines can be fulfilled with a total number of four identification points by LC/MS/MS methods using a triple-quadrupole mass spectrometer. Furthermore, the methods are sufficiently sensitive to meet current requirements for confirmatory analysis of drugs of abuse in driving under the influence of drugs (DUID) cases established by the Society of Toxicological and Forensic Chemistry (GTFCh).  相似文献   

2.
Methods for the measurement of penicillin concentration in bovine plasma, kidney and urine were developed and validated. Detection was based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Phenethecillin was used as an internal standard. Plasma was extracted with acetonitrile using a method with a calculated limit of quantitation (LOQ) of 12 ng/mL. Kidney samples were homogenized in water and acetonitrile, then cleaned up on C18-bonded silica SPE cartridges. The LOQ of this procedure was 10 ng/g. Urine samples were diluted, filtered, and analyzed directly. The LOQ of this procedure was 63 ng/mL. The overall accuracy for plasma was 103% with coefficient of variation (CV) of 3%; for kidney, 96% and 11%, respectively, and for urine, 98% and 4%, respectively. These methods were applied to the analysis of plasma, urine, and kidney biopsy samples taken from standing animals that had been dosed with penicillin.  相似文献   

3.
A rapid high-performance liquid chromatographic assay with isocratic elution is developed for the simultaneous quantification of valaciclovir (VACV) prodrug and its active converted compound, acyclovir (ACV), in biological fluids of treated patients. For serum, the samples are deproteinized with perchloric acid in presence of 1-methylguanosine as the internal standard (IS). For urine and dialysis liquid, the samples are diluted with a mobile phase containing the IS, then filtered. VACV, ACV and the IS are separated on a SymmetryShield™ RP-8 column with acetonitrile–ammonium phosphate buffer as the mobile phase and detected at 254 nm. The chromatographic time is about 12 min. The relative standard deviations (RSD) of VACV and ACV standards are between 0.5 and 3.5%. Most endogenous nucleosides and their metabolites, psychotropic drugs and drugs of abuse are shown not to interfere with this technique. The method has been applied to study the pharmacokinetics of VACV and ACV in serum, dialysis liquid and urine of renal failure patients on continuous ambulatory peritoneal dialysis (CAPD) under oral treatment of VACV.  相似文献   

4.
An accurate, sensitive, selective and reproducible high-performance liquid chromatographic method with coulometric detection for the determination of cyclizine and its inactive demethylated metabolite, norcyclizine, in biological fluids has been developed. The drugs were separated using a custom packed reversed-phase C18 analytical column and phosphate buffer (0.05 M, pH 3)-acetonitrile (7:3) as mobile phase. The dual electrode coulometric detector was operated in the “oxidative-screen” mode with the upstream electrode (detector 1) set at 0.55 V and the downstream electrode (detector 2) set at 0.90 V. Serum and urine samples were prepared for analysis by solid-phase extraction, followed by a simple phase-separation step. The limit of quantitation was 1 ng/ml for both cyclizine and norcyclizine in serum and urine.  相似文献   

5.
A modified specific, sensitive and reproducible chiral gas chromatographic (GC) method for the resolution and quantification of ethosuximide enantiomers in urine and plasma was developed. The samples were extracted by liquid-liquid extraction, using diethylether and the enantiomers were separated and quantified on a chiral gas chromatographic column (25QC2 / CYDEX- beta 0.25). The method involved the use of GC/MS instrumentation for the acquisition of data in the electron impact selective-ion monitoring mode, collecting ions characteristic of both ethosuximide and alpha, alpha - dimethyl - beta - methylsuccinimide, the internal standard and of mass-to-charge ratio (m/z) exactly equal to 55 and 70 units. The limit of quantitation of the method was 2.5 microg/ml for both urine and plasma with both enantiomers. The method proved to be linear, precise and reproducible in the 5-300 microg/ml concentration range for urine samples and in the 10-250 microg/ml concentration range for plasma samples. Future research work envisaged the application of this method in pharmacokinetic and pharmacodynamic studies.  相似文献   

6.
We describe a rapid GC/MS assay for amphetamine-type stimulant drugs (ATSs) and structurally related common medicaments in blood, serum, oral fluid and urine samples. The drugs were extracted from their matrices and derivatized with heptafluorobutyric anhydride (HFBA) in a single step, using the following procedure: 100 microl (oral fluid) or 200 microl (blood, serum, urine) of the sample were mixed with 50 microl of alkaline buffer and 500 microl of extraction-derivatization reagent (toluene + HFBA + internal standard), centrifuged, and injected into a GC/MS apparatus. As revealed by the validation data this procedure, with its limit of quantitation being set at 20 ng/ml for oral fluid, 25 ng/ml for blood or 200 ng/ml for urine, is suitable for screening, identification and quantitative determination of the ATSs and related drugs in all the matrices examined. Thus, time-consuming and expensive multiple analyses are not needed, unless specifically required.  相似文献   

7.
A high-performance liquid chromatographic method of analysis with UV detection has been developed to measure levels of a new radiosensitiser, Ro 03-8799 and its N-oxide metabolite, in biological fluids and tissues.The accuracy and precision of the method have been determined in both plasma and urine, where the limits of quantitation are 100 and 500 ng/ml, respectively. Typical results are presented from a human volunteer study where samples were analysed by this method.Important aspects of the method, involving both sample handling techniques and chromatographic conditions are discussed.  相似文献   

8.
A gas chromatographic method for the simultaneous quantitation of ephedrine, pseudoephedrine, norephedrine (phenylpropanolamine), norpseudoephedrine (cathine) and methylephedrine in urine is described. The method consists of a liquid–liquid extraction with tert.-butyl methyl ether at pH 14. The extracts are analysed on a GC system equipped with an Rtx-5 Amine column and a nitrogen–phosphorus detector. Method validation shows excellent separation, linearity, specificity, accuracy, precision, intra-laboratory repeatability and reproducibility, making the method especially suitable for quantitation of ephedrines in urine samples for doping control purposes. A statistical analysis on the abuse of the different ephedrines in urine from athletes controlled in the Flemish doping control laboratory during the period 1993–2000 is included.  相似文献   

9.
A sensitive reversed-phase high-performance liquid chromatographic fluorescence method is described for the simultaneous determination of topotecan (I) and the hydrolysed lactone ring-opened product hydroxy acid (II) in plasma and for the determination of I in urine. To 250 μl of plasma, a 750-μl volume of cold methanol was added to stabilize the pH-dependent conversion of I into II. In plasma, the lower limit of quantitation (LLQ) for both compounds was 0.10 ng/ml. The between-day variation for I at the LLQ was 7.1% and for II was 5.5%. Prior to injection, urine samples were acidified with orthophosphoric acid and diluted with phosphate-buffered saline (PBS). In urine, the calibration curve for I was linear in the range of 10 to 250 ng/ml and the LLQ was 10 ng/ml. The assay was developed to enable pharmacological analysis of I, in on-going phase I and II studies, in patients with solid tumors.  相似文献   

10.
A reversed-phase high-performance liquid chromatography method was developed and validated for the quantitation of pemetrexed (LY231514, ALIMTA) in human urine and plasma. Plasma samples were spiked with the internal standard lometrexol and extracted using Certify II columns. Pemetrexed was assayed in diluted urine by an external calibration method. A C8 column was used for the separation of analytes with a mobile phase composed of sodium formate buffer and acetonitrile. Between- and within-day precision and accuracy were acceptable down to the limit of quantitation of 5 ng/ml in plasma. This method was used successfully for an investigation of the disposition of pemetrexed in patients receiving 500 mg/m2 as a 10-min infusion.  相似文献   

11.
DZ-2640 is a new oral carbapenem antibiotic having a dihydro-pyrroloimidazole ring as a side chain and a pivaloyloxymethyl (POM) ester prodrug of DU-6681, the active parent compound. A simple and sensitive column-switching semi-microcolumn high-performance liquid chromatographic method for the determination of DU-6681 in human plasma and urine has been developed. Human plasma was diluted with an equal volume of 1 M MOPS buffer (pH 7.0) and the mixture was filtered through an Ultrafree C3GV. The resulting filtrate was injected without further cleanup onto the HPLC system. Human urine was diluted with an equal volume of 1 M MOPS buffer (pH 7.0) and the mixture was directly injected onto the HPLC system. The analyte was detected by monitoring the column effluent with UV light at a wavelength of 300 nm, which resulted in the limit of quantitation of 0.008 μg/ml of plasma and 0.32 μg/ml of urine. Calibration curves were linear in the range of 0.008 to 5.85 μg/ml in plasma and 0.32 to 104.4 μg/ml in urine. The present methods showed greatly increased sensitivity for DU-6681 compared to conventional HPLC methods and also showed satisfactory recovery, selectivity, precision, and accuracy. Stability studies showed that 1 M MOPS buffer (pH 7.0) acted as a stabilizer. In plasma and urine diluted with equal volume of the buffer, DU-6681 showed good stability at −80°C for up to 4 weeks with no significant loss of the drug.  相似文献   

12.
A highly sensitive and selective high-performance liquid chromatographic assay has been developed for the separation and quantitation of tolmetin and its major metabolite in human biological fluids, viz. plasma, urine and synovial fluid. Analysis of plasma and synovial fluid required only 0.5 ml of the sample. The sample was washed with diethyl ether and extracted with diethyl ether—chloroform (2:1). The extracted compounds were injected onto a reversed-phase column (RP-2) and absorbance was measured at 313 nm. The standard curves in plasma were found to be linear for both tolmetin and the metabolite at concentrations from 0.04 to 10.0 μg/ml. Urine samples (0.5 ml) were diluted (1:1) with methanol containing the internal standard and were directly injected onto the reversed-phase (RP-2) column. Standard curves of tolmetin and metabolite in urine were linear in the range 5–300 μg/ml. Serum and synovial fluid concentrations of tolmetin and its metabolite in patients receiving multiple doses of tolmetin sodium were determined using the assay procedure.  相似文献   

13.
Urinary creatinine analysis is required for clinical diagnosis, especially for evaluation of renal function. Creatinine adjustment is also widely used to estimate 24-h excretion from spot samples. Few convenient validated approaches are available for in-house creatinine measurement for small- to medium-scale studies. Here we apply the Jáffe reaction to creatinine determination with zone fluidic multichannel kinetic spectrophotometry. Diluted urine sample and reagent, alkaline picric acid, were mixed by a computer-programmed dispenser and rapidly delivered to a four-channel detection cell. The absorbance change was monitored by a flow-through light-emitting diode-photodiode-based detector. Validation results against high-performance liquid chromatography-ultraviolet (HPLC-UV)/mass spectrometry (MS) are presented. Responses for 10-fold diluted samples were linear within clinically relevant ranges (0-250 mg/L after dilution). The system can analyze 70 samples per hour with a limit of detection of 0.76 mg/L. The relative standard deviation was 1.29% at 100 mg/L creatinine (n=225). Correlation with the HPLC (UV quantitation/MS confirmation) system was excellent (linear, r2=0.9906). The developed system allows rapid, simple, cost-effective, and robust creatinine analysis and is suitable for the analysis of large numbers of urine samples.  相似文献   

14.
Methadone and buprenorphine are two of the drugs most frequently used for abstinence from illicit opioids and in the treatment of pain. A sensitive and selective high-performance liquid chromatographic method with diode array detection for the simultaneous determination of methadone, buprenorphine and norbuprenorphine has been developed. Separation of the three analytes was obtained by using a reversed-phase column (C8, 250mmx4.6mm i.d., 5microm) and a mobile phase composed of 40% phosphate buffer containing triethylamine, 50% methanol and 10% acetonitrile (final apparent pH 6.0). Loxapine was used as the internal standard. An accurate pre-treatment procedure of biological samples was developed, using solid-phase extraction with C8 cartridges (100mg, 1mL) and needing small amounts of plasma or urine (300microL). The calibration curves were linear over a working range of 10.0-1500.0ng/mL for methadone and of 5.0-500.0ng/mL for buprenorphine and norbuprenorphine in both matrices. The limit of quantitation (LOQ) and the limit of detection (LOD) were 1.0 and 0.4ng/mL for methadone and 0.5 and 0.2ng/mL for both buprenorphine and norbuprenorphine, respectively. The method was successfully applied to the analysis of plasma and urine samples from patients undergoing treatment with these drugs. Precision and accuracy results were satisfactory and no interference from endogenous or exogenous compounds was found. The method is suitable for the simultaneous determination of methadone and buprenorphine in human plasma and urine for therapeutic drug monitoring purposes.  相似文献   

15.
Adulteration of samples is a serious problem in the analysis of drugs of abuse. One of the most frequent methods is substitution of urines by "clean" urines to gain false-negative results in laboratory tests for drugs of abuse. One way to approach this problem may be to label the patient's urine with marker substances which are given orally prior to the delivery of urine. This concept is based on methods for determining malabsorption in pediatric medicine. We report a protocol for evaluating low-molecular-mass polyethylene glycols as enteral labelling marker substances. For monitoring renal excretion of the ingested polyethylene glycols we have developed and optimised an isocratic reversed-phase high-performance liquid chromatographic method with automatic sample cleanup by column switching in the back-flush technique and with RI detection. The chromatographic procedure is simple, reliable and rapid, allowing a high sample throughput for routine screening.  相似文献   

16.
Methods for the measurement of gentamicin concentration in several bovine tissues were developed and validated. A novel liquid chromatographic (LC) technique employed trifluoroacetic acid in the mobile phase so that all gentamicin components co-eluted. Analytes were ionized by positive-ion pneumatically assisted electrospray and detected by selected reaction monitoring (SRM) with an LC-tandem mass spectrometer (LC/MS/MS). Calibration of plasma and urine samples was based on tobramycin internal standard. Calibration of milk and kidney samples was based on external standard, due to variability of tobramycin response in these matrices. The extraction technique employed treatment with aqueous trichloroacetic acid to both precipitate protein and liberate gentamicin from the matrix. Milk samples had to be defatted by centrifugation prior to extraction. Urine samples were further cleaned up with C-18 solid phase extraction (SPE). These methods were validated for use in several residue depletion studies (reported elsewhere) to monitor the depletion of gentamicin in tissues under various dosing conditions. The plasma method was calibrated from 1 to 5000 ng/mL in two ranges, with a limit of quantitation (LOQ) in the low range calculated at 3.3 ng/mL. The milk method was calibrated from 2.5 to 2500 ng/mL with an LOQ calculated at 4.5 ng/mL. The urine method was designed for use at low levels, and was calibrated from 1 to 100 ng/mL with an LOQ of 3.8 ng/mL. The kidney method was primarily designed for analysis of small samples (approximately 100mg). This method was calibrated from 10 to 50,000 ng/g with an LOQ of 26 ng/g.  相似文献   

17.
We present herein an ultra-fast quantitative assay for the quantitation of saquinavir in human plasma, without prior chromatographic separation, with matrix-assisted laser desorption/ionization using the selected reaction monitoring quantitation mode (MALDI-SRM/MS). The method was found to be linear from 5 to 10,000ng/ml using pentadeuterated saquinavir (SQV-d5) as an internal standard, and from 5 to 1000ng/ml using reserpine as internal standard (IS). Accuracy and precision were in the range of 101-108%, 3.9-11% with SQV-d5 and in the range 93-108%, 3.5-15% with reserpine. Plasma samples (250mul) were extracted with a mixture of ethyl acetate/hexane. MALDI spotting of the extract was automated using electrodeposition and the dried droplet method using alpha-cyano-4-hydroxycinnamic acid (CHCA) as matrix. A 96 spots MALDI plate was prepared within 20min in a fully unattended manner. Each sample was spotted four times and quantitation was based on the average of their analyte/IS area ratio. Samples were analyzed on a triple quadrupole linear ion trap (QqQ(LIT)) equipped with a high repetition laser source (1000Hz). The analysis time of one sample was approximately 6s, therefore 96 samples could be analyzed in less than 10min. With liquid-liquid extraction sample preparation no significant matrix effects were observed. Moreover, the assay showed sufficient selectivity for samples to be analyzed at the lower limit of quantification (LLOQ) in the presence of other antiretroviral drugs, without prior chromatographic steps. In parallel, to assess the selectivity of the assay with real samples, a liquid chromatography (LC)-SRM/MS method was developed and a cross validation with clinical samples was successfully performed.  相似文献   

18.
A sensitive and versatile high-performance liquid chromatographic assay for the determination of the calcium antagonist SIM6080 and its four N- and O-demethylated metabolites in plasma, urine and tissues has been developed and validated. A two-step extraction procedure is employed followed by reversed-phase liquid chromatographic analysis using ultraviolet detection. An isomer of SIM6080 was used as the internal standard. The analysis of spiked plasma, urine and tissues demonstrated the accuracy and precision of the assay with quantitation limits of 5 ng/ml (plasma and urine) or 100 ng/g (tissues). This assay has been used for urinary recovery and tissue distribution studies, as well as for toxicokinetic protocols.  相似文献   

19.
Gas chromatographic procedures [GC with electron-capture detection (ECD) and GC–MS] for the quantitative analysis of metrifonate and its active metabolite 2,2-dichlorovinyl dimethylphosphate (DDVP) in human blood and urine were developed, validated, and applied to the analysis of clinical study samples. Analysis of metrifonate involved extraction of acidified blood with ethyl acetate followed by solid-phase clean-up of the organic extract. Acidified urine was extracted with dichloromethane and the residue of evaporated organic phase was reconstituted in toluene. ECD and diethyl analogue of metrifonate internal standard (I.S.) were used for quantitation of metrifonate. The metrifonate lower limit of quantitation (LOQ) was 10.0 μg/l. The DDVP metabolite was chromatographed separately after cyclohexane extraction of acidified blood and urine using d6-DDVP I.S. and MS detection. The LOQ of DDVP was 1 μg/l. Stability studies have confirmed that the matrix should be acidified prior to storage at −20°C or −80°C to inhibit chemical and enzymatic degradation of the analytes and to avoid overestimation of DDVP concentrations. Metrifonate was found to be stable in acidified human blood after 20 months of storage at −20°C and after 23 months of storage at −80°C. Under these conditions DDVP was found to be stable after 12 months of storage. Both assay procedures were cross-validated by different world-wide laboratories and found to be accurate and robust during analyses of clinical study samples.  相似文献   

20.
A method was developed for the rapid quantitative analysis of chlorpheniramine in plasma, saliva and urine using high-performance liquid chromatography. A diethyl ether or hexane extract of the alkalinized biological samples was extracted with dilute acid which was chromatographed on a reversed-phase column using mixtures of acetonitrile and ammonium phosphate buffer as the mobile phase. Ultraviolet absorption at 254 nm was monitored for the detection and brompheniramine was employed as the internal standard for the quantitation. The effects of buffer, pH, and acetonitrile concentration in the mobile phase on the chromatographic separation were investigated. A mobile phase 20% acetonitrile in 0.0075 M phosphate buffer at a flow-rate of 2 ml/min was used for the assays of plasma and saliva samples. A similar mobile phase was used for urine samples. The drug and internal standard were eluted at retention volumes of less than 17 ml. The method can also be used to quantify two metabolites, didesmethyl- and desmethylchlorpheniramine, in the urine. The method can accurately measure chlorpheniramine levels down to 2 ng/ml in plasma or saliva using 1 ml of sample, and should be adequate for biopharmaceutical and pharmacokinetic studies. Various precautions for using the assay are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号