首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methionine sulfoxide reductase A is an essential enzyme in the antioxidant system, which scavenges reactive oxygen species through cyclic oxidation and reduction of methionine and methionine sulfoxide. In mammals, one gene encodes two forms of the reductase, one targeted to the cytosol and the other to mitochondria. The cytosolic form displays faster mobility than the mitochondrial form, suggesting a lower molecular weight for the former. The apparent size difference and targeting to two cellular compartments had been proposed to result from differential splicing of mRNA. We now show that differential targeting is effected by use of two initiation sites, one of which includes a mitochondrial targeting sequence, whereas the other does not. We also demonstrate that the mass of the cytosolic form is not less than that of the mitochondrial form; the faster mobility of cytosolic form is due to its myristoylation. Lipidation of methionine sulfoxide reductase A occurs in the mouse, in transfected tissue culture cells, and even in a cell-free protein synthesis system. The physiologic role of myristoylation of MsrA remains to be elucidated.  相似文献   

2.
Methionine sulfoxide reductase A (MsrA), a member of the Msr gene family, can reduce methionine sulfoxide residues in proteins formed by oxidation of methionine by reactive oxygen species (ROS). Msr is an important protein repair system which can also function to scavenge ROS. Our studies have confirmed the expression of MsrA in mouse embryonic stem cells (ESCs) in culture conditions. A cytosol‐located and mitochondria‐enriched expression pattern has been observed in these cells. To confirm the protective function of MsrA in ESCs against oxidative stress, a siRNA approach has been used to knockdown MsrA expression in ES cells which showed less resistance than control cells to hydrogen peroxide treatment. Overexpression of MsrA gene products in ES cells showed improved survivability of these cells to hydrogen peroxide treatment. Our results indicate that MsrA plays an important role in cellular defenses against oxidative stress in ESCs. Msr genes may provide a new target in stem cells to increase their survivability during the therapeutic applications. J. Cell. Biochem. 111: 94–103, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Reactive oxygen species (ROS) are critical in tissue responses to ischemia-reperfusion. The enzyme methionine sulfoxide reductase-A (MsrA) is capable of protecting cells against oxidative damage by reversing damage to proteins caused by methionine oxidation or by decreasing ROS through a scavenger mechanism. The current study employed adenovirus mediated over-expression of MsrA in primary neonatal rat cardiac myocytes to determine the effect of this enzyme in protecting against hypoxia/reoxygenation in this tissue. Cells were transduced with MsrA encoding adenovirus and subjected to hypoxia/reoxygenation. Apoptotic cell death was decreased by greater than 45% in cells over-expressing MsrA relative to cells transduced with a control virus. Likewise total cell death as determined by levels of LDH release was dramatically decreased by MsrA over-expression. These observations indicate that MsrA is protective against hypoxia/reoxygenation stress in cardiac myocytes and point to MsrA as an important therapeutic target for ischemic heart disease.  相似文献   

4.
活性氧簇是细胞有氧代谢过程中产生的一类化学基团。线粒体是活性氧簇的主要生成位点。一般观点认为,在脑缺血-再灌注损伤过程中,活性氧簇发挥神经细胞损伤作用。活性氧簇不仅直接参与神经细胞氧化损伤过程,也可通过外源性途径和内源性途径,引起神经细胞凋亡。然而,除神经细胞损伤作用外,活性氧簇也可发挥神经细胞保护作用。活性氧簇可激活低氧诱导因子、核转录因子κB、PI3K/Akt通路和MAPK通路等,参与神经细胞存活机制,减轻神经细胞损伤。本文对活性氧簇在脑缺血-再灌注损伤中的双重作用进行综述。  相似文献   

5.
Hind limb ischemia-reperfusion injury is an important pathology in vascular surgery. Reactive oxygen species are thought to be involved in the pathogenesis of hind limb ischemia-reperfusion injury. SS-31, which belongs to a family of mitochondrion-targeted peptide antioxidants, was shown to reduce mitochondrial reactive oxygen species production. In this study, we investigated whether the treatment of SS-31 could protect hind limb from ischemia-reperfusion injury in a mouse model. The results showed that SS-31 treatment either before or after ischemia exhibited similar protective effects. Histopathologically, SS-31 treatment prevented the IR-induced histological deterioration compared with the corresponding vehicle control. SS-31 treatment diminished oxidative stress revealed by the reduced malondialdehyde level and increased activities and protein levels of Sod and catalase. Cellular ATP contents and mitochondrial membrane potential increased and the level of cytosolic cytC was decreased after SS-31 treatment in this IR model, demonstrating that mitochondria were protected. The IR-induced increase of levels of inflammatory factors, such as Tnf-α and Il-1β, was prevented by SS-31 treatment. In agreement with the reduced cytosolic cytC, cleaved-caspase 3 was kept at a very low level after SS-31 treatment. Overall, the effect of SS-31 treatment before ischemia is mildly more effective than that after ischemia. In conclusion, our results demonstrate that SS-31 confers a protective effect in the mouse model of hind limb ischemia-reperfusion injury preventatively and therapeutically.  相似文献   

6.
We investigated the role of methionine sulfoxide reductases (Msrs) in oxidant-stress-induced cell death in retinal pigmented epithelial (RPE) cells. In RPE cells exposed to varying doses of H(2)O(2), gene expression of MsrA and hCBS-1 (the human analog of MsrB2) increased in a dose-dependent and time-dependent manner with maximal increase with 150 microM H(2)O(2) in 24h. H(2)O(2) treatment resulted in the generation of reactive oxygen species and activation of caspase 3. Confocal microscopic and protein analysis showed an increase in MsrA expression in cytosol and mitochondria. Silencing of MsrA resulted in caspase 3 induction and accentuated cell death from H(2)O(2). Focal, strong immunoreactivity for MsrA was observed in sub-RPE macular drusen from patients with age-related macular degeneration. In summary, our data show that MsrA and hCBS-1 are up-regulated in oxidative stress to counteract injury to RPE.  相似文献   

7.
Human peroxiredoxin 5 is a recently discovered mitochondrial, peroxisomal and cytosolic thioredoxin peroxidase able to reduce hydrogen peroxide and alkyl hydroperoxides. To gain insight into peroxiredoxin 5 antioxidant role in cell protection, we investigated the resistance of yeast cells expressing human peroxiredoxin 5 in mitochondria or in the cytosol against oxidative stress induced by paraquat. The herbicide paraquat is a redox active drug known to generate superoxide anions in mitochondria and the cytosol of yeast and mammalian cells leading to the formation of several reactive oxygen species. Here, we report that mitochondrial and cytosolic human peroxiredoxin 5 protect yeast cells from cytotoxicity and lipid peroxidation induced by paraquat.  相似文献   

8.

Background  

Methionine sulfoxide reduction is an important protein repair pathway that protects against oxidative stress, controls protein function and has a role in regulation of aging. There are two enzymes that reduce stereospecifically oxidized methionine residues: MsrA (methionine-S-sulfoxide reductase) and MsrB (methionine-R-sulfoxide reductase). In many organisms, these enzymes are targeted to various cellular compartments. In mammals, a single MsrA gene is known, however, its product is present in cytosol, nucleus, and mitochondria. In contrast, three mammalian MsrB genes have been identified whose products are located in different cellular compartments.  相似文献   

9.
Manganese superoxide dismutase (MnSOD) is one of the main antioxidant enzymes that protects the heart against ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) is a short period of ischemia-reperfusion that reduces subsequent prolonged I/R injury. Although MnSOD localizes in mitochondria, the immediate subcellular distribution of MnSOD in heart after IPC and I/R has not been studied. In a Langendorff mouse heart model, IPC significantly improved cardiac function and reduced the infarction size induced by I/R. Immunoblotting and double immunostaining in fresh preparations revealed that I/R resulted in an increase in cytosolic MnSOD content accompanied by the release of cytochrome c. In contrast, IPC increased mitochondrial MnSOD and reduced cytosolic MnSOD and cytochrome c release induced by I/R. We found that compared with freshly prepared fractions, the freeze-thaw approach results in mitochondrial integrity disruption and release of large amounts of MnSOD into the cytosol along with mitochondrial markers even in the absence of I/R. In contrast, fresh preparations exhibit early MnSOD release into the cytosol after I/R that is prevented by IPC and cyclosporin A administration.  相似文献   

10.
The cytosolic small heat shock protein alphaB-crystallin (alphaBC) is a molecular chaperone expressed in large quantities in the heart, where it protects from stresses such as ischemia-reperfusion (I/R). Upon I/R, p38 MAP kinase activation leads to phosphorylation of alphaBC on Ser(59) (P-alphaBC-S59), which increases its protective ability. alphaBC confers protection, in part, by interacting with and affecting the functions of key components in stressed cells. We investigated the hypothesis that protection from I/R damage in the heart by P-alphaBC-S59 can be mediated by localization to mitochondria. We found that P-alphaBC-S59 localized to mitochondria isolated from untreated mouse hearts and that this localization increased more than threefold when the hearts were subjected to ex vivo I/R. Mitochondrial P-alphaBC-S59 decreased when hearts were treated with the p38 inhibitor SB-202190. Moreover, SB-202190-treated hearts exhibited more tissue damage and less functional recovery upon reperfusion than controls. I/R activates mitochondrial permeability transition (MPT) pore opening, which increases cell damage. We found that mitochondria incubated with a recombinant mutant form of alphaBC that mimics P-alphaBC-S59 exhibited decreased calcium-induced MPT pore opening. These results indicate that mitochondria may be among the key components in stressed cells with which P-alphaBC-S59 interacts and that this localization may protect the myocardium, in part, by modulating MPT pore opening and, thus, reducing I/R injury.  相似文献   

11.
A N Glazer 《FASEB journal》1988,2(9):2487-2491
Attack by reactive oxygen species leads to a decay in phycoerythrin fluorescence emission. This phenomenon provides a versatile new assay for small molecules and macromolecules that can function as protective compounds. With 1-2 x 10(-8) M phycoerythrin, under conditions where peroxyl radical generation is rate-limiting, the fluorescence decay follows apparent zero-order kinetics. On reaction with HO., generated with the ascorbate-Cu2+ system, the fluorescence decays with apparent first-order kinetics. Examination of the major components of human urine in this assay confirms that at physiological concentrations, urate protects against both types of oxygen radicals. A novel finding is that creatinine protects efficiently by a chelation mechanism against radical damage in the ascorbate-Cu2+ system at creatinine, ascorbate, and Cu2+ concentrations comparable to those in normal urine. Urate and creatinine provide complementary modes of protection against reactive oxygen species in the urinary tract.  相似文献   

12.
Parkinson's disease (PD) is a neurologic disorder characterized by dopaminergic cell death in the substantia nigra. PD pathogenesis involves mitochondrial dysfunction, proteasome impairment, and alpha-synuclein aggregation, insults that may be especially toxic to oxidatively stressed cells including dopaminergic neurons. The enzyme methionine sulfoxide reductase A (MsrA) plays a critical role in the antioxidant response by repairing methionine-oxidized proteins and by participating in cycles of methionine oxidation and reduction that have the net effect of consuming reactive oxygen species. Here, we show that MsrA suppresses dopaminergic cell death and protein aggregation induced by the complex I inhibitor rotenone or mutant alpha-synuclein, but not by the proteasome inhibitor MG132. By comparing the effects of MsrA and the small-molecule antioxidants N-acetylcysteine and vitamin E, we provide evidence that MsrA protects against PD-related stresses primarily via methionine sulfoxide repair rather than by scavenging reactive oxygen species. We also demonstrate that MsrA efficiently reduces oxidized methionine residues in recombinant alpha-synuclein. These findings suggest that enhancing MsrA function may be a reasonable therapeutic strategy in PD.  相似文献   

13.

Background  

Methionine Sulfoxide Reductase A (MsrA), an enzyme in the Msr gene family, is important in the cellular anti-oxidative stress defense mechanism. It acts by reducing the oxidized methionine sulfoxide in proteins back to sulfide and by reducing the cellular level of reactive oxygen species. MsrA, the only enzyme in the Msr gene family that can reduce the S-form epimers of methionine sulfoxide, has been located in different cellular compartments including mitochondria, cytosol and nuclei of various cell lines.  相似文献   

14.
Kim HY  Gladyshev VN 《Biochemistry》2005,44(22):8059-8067
Oxidized forms of methionine residues in proteins can be repaired by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). In mammals, three MsrBs are present, which are targeted to various subcellular compartments. In contrast, only a single mammalian MsrA gene is known whose products have been detected in both cytosol and mitochondria. Factors that determine the location of the protein in these compartments are not known. Here, we found that MsrA was present in cytosol, nucleus, and mitochondria in mouse cells and tissues and that the major enzyme forms detected in various compartments were generated from a single-translation product rather than by alternative translation initiation. Both cytosolic and mitochondrial forms were processed with respect to the N-terminal signal peptide, and the distribution of the protein occurred post-translationally. Deletion of amino acids 69-108, 69-83, 84-108, or 217-233, which contained elements important for MsrA structure and function, led to exclusive mitochondrial location of MsrA, whereas a region that affected substrate binding but was not part of the overall fold had no influence on the subcellular distribution. The data suggested that proper structure-function organization of MsrA played a role in subcellular distribution of this protein in mouse cells. These findings were recapitulated by expressing various forms of mouse MsrA in Saccharomyces cerevisiae, suggesting conservation of the mechanisms responsible for distribution of the mammalian enzyme among different cellular compartments.  相似文献   

15.
There is growing evidence that oxidative stress plays an integral role in the processes by which obesity causes type 2 diabetes. We previously identified that mice lacking the protein oxidation repair enzyme methionine sulfoxide reductase A (MsrA) are particularly prone to obesity-induced insulin resistance suggesting an unrecognized role for this protein in metabolic regulation. The goals of this study were to test whether increasing the expression of MsrA in mice can protect against obesity-induced metabolic dysfunction and to elucidate the potential underlying mechanisms. Mice with increased levels of MsrA in the mitochondria (TgMito MsrA) or in the cytosol (TgCyto MsrA) were fed a high fat/high sugar diet and parameters of glucose homeostasis were monitored. Mitochondrial content, markers of mitochondrial proteostasis and mitochondrial energy utilization were assessed. TgMito MsrA, but not TgCyto MsrA, mice remain insulin sensitive after high fat feeding, though these mice are not protected from obesity. This metabolically healthy obese phenotype of TgMito MsrA mice is not associated with changes in mitochondrial number or biogenesis or with a reduction of proteostatic stress in the mitochondria. However, our data suggest that increased mitochondrial MsrA can alter metabolic homeostasis under diet-induced obesity by activating AMPK signaling, thereby defining a potential mechanism by which this genetic alteration can prevent insulin resistance without affecting obesity. Our data suggest that identification of targets that maintain and regulate the integrity of the mitochondrial proteome, particular against oxidative damage, may play essential roles in the protection against metabolic disease.  相似文献   

16.
Proteins are modified by reactive oxygen species, and oxidation of specific amino acid residues can impair their biological functions, leading to an alteration in cellular homeostasis. Oxidized proteins can be eliminated through either degradation or repair. Repair is limited to the reversion of a few modifications such as the reduction of methionine oxidation by the methionine sulfoxide reductase (Msr) system. However, accumulation of oxidized proteins occurs during aging, replicative senescence, or neurological disorders or after an oxidative stress, while Msr activity is impaired. In order to more precisely analyze the relationship between oxidative stress, protein oxidative damage, and MsrA, we stably overexpressed MsrA full-length cDNA in SV40 T antigen-immortalized WI-38 human fibroblasts. We report here that MsrA-overexpressing cells are more resistant than control cells to hydrogen peroxide-induced oxidative stress, but not to ultraviolet A irradiation. This MsrA-mediated resistance is accompanied by a decrease in intracellular reactive oxygen species and is partially abolished when cells are cultivated at suboptimal concentration of methionine. These results indicate that MsrA may play an important role in cellular defenses against oxidative stress, by catalytic removal of oxidant through the reduction of methionine sulfoxide, and in protection against death by limiting, at least in part, the accumulation of oxidative damage to proteins.  相似文献   

17.
Several studies have shown that pyruvate can scavenge H(2)O(2) and protect from H(2)O(2)-mediated cell injury. Mitochondria are critical participants in the control of apoptotic and necrotic cell death. Mitochondrial GSH plays an important role in the maintenance of cell functions and viability by metabolism of oxygen free radicals generated by the respiratory chain. Since loss of GSH, especially mitochondrial GSH, is associated with increased production of reactive oxygen species and cell toxicity, the ability of pyruvate to protect against these actions was evaluated. Adding pyruvate to HepG2 cells depleted of GSH by treatment with l-buthionine sulfoximine (BSO) surprisingly caused loss of viability after 24 and 48 h of incubation. Anoxia, treatment with antioxidants, and infection with cytosolic catalase, and interestingly, catalase expressed in the mitochondrial compartment were able to rescue the HepG2 cells from this pyruvate plus BSO injury, suggesting a key role for H(2)O(2), and lipid peroxides as mediators in the cytotoxicity. This toxicity and cell death observed was linked to damage to the mitochondria as evidenced by the increased lipid peroxidation in total homogenate and mitochondrial fraction, loss of mitochondrial membrane potential, and a decrease in protein-sulfhydryl groups. The type of cell death observed under these conditions was a mixture of apoptosis and necrosis. These results suggest that the protective ability of pyruvate against oxidant damage requires a functional GSH pool, especially in the mitochondrial compartment, and that in the absence of GSH, pyruvate increases cell injury by damaging the mitochondria, presumably as a consequence of enhanced electron flow and reactive oxygen production by the respiratory chain.  相似文献   

18.
Methionine is a highly susceptible amino acid that can be oxidized to S and R diastereomeric forms of methionine sulfoxide by many of the reactive oxygen species generated in biological systems. Methionine sulfoxide reductases (Msrs) are thioredoxin-linked enzymes involved in the enzymatic conversion of methionine sulfoxide to methionine. Although MsrA and MsrB have the same function of methionine reduction, they differ in substrate specifi city, active site composition, subcellular localization, and evolution. MsrA has been localized in different ocular regions and is abundantly expressed in the retina and in retinal pigment epithelial (RPE) cells. MsrA protects cells from oxidative stress. Overexpression of MsrA increases resistance to cell death, while silencing or knocking down MsrA decreases cell survival; events that are mediated by mitochondria. MsrA participates in protein-protein interaction with several other cellular proteins. The interaction of MsrAwith α-crystallins is of utmost importance given the known functions of the latter in protein folding, neuroprotection, and cell survival. Oxidation of methionine residues in α-crystallins results in loss of chaperone function and possibly its antiapoptotic properties. Recent work from our laboratory has shown that MsrA is co-localized with αA and αB crystallins in the retinal samples of patients with age-related macular degen- eration. We have also found that chemically induced hypoxia regulates the expression of MsrA and MsrB2 in human RPE cells. Thus, MsrA is a critical enzyme that participates in cell and tissue protection, and its interaction with other proteins/growth factors may provide a target for therapeutic strategies to prevent degenerative diseases.  相似文献   

19.
Glutathione S-transferases (GSTs) are multifunctional enzymes involved in the protection of cellular components against anti-cancer drugs or peroxidative stress. Previously we found that GST π, an isoform of the GSTs, is transported into the nucleus. In the present study, we found that GST π is present in mitochondria as well as in the cytosol and nucleus in mammalian cell lines. A construct comprising the 84 amino acid residues in the amino-terminal region of GST π and green fluorescent protein was detected in the mitochondria. The mutation of arginine to alanine at positions 12, 14, 19, 71, and 75 in full-length GST π completely abrogated the ability to distribute in the mitochondria, suggesting that arginine, a positively charged residue, is required for the mitochondrial transport of GST π. Chemicals generating reactive oxygen species, such as rotenone and antimycin A, decreased cell viability and reduced mitochondrial membrane potential. The overexpression of GST π diminished these changes. GST π-targeting siRNA abolished the protective effect of GST π on the mitochondria under oxidative stress. The findings indicate that the peptide signal is conducive to the mitochondrial localization of GST π under steady-state conditions without alternative splicing or posttranslational modifications such as proteolysis, suggesting that GST π protects mitochondria against oxidative stress.  相似文献   

20.
Ionizing radiation (IR) leads to oxidizing events such as excessive reactive oxygen species (ROS) in the exposed cells, resulting in further oxidative damage to lipids, proteins and DNA. To screen the potential radio-protective drug, the intracellular ROS was measured in irradiated U937 cells pretreated with 80 candidate traditional herbal medicine, respectively. Isofraxidin (IF) was one possible radio-protector in these 80 drugs. This study investigated the radio-protective role of IF, a Coumarin compound, in human leukemia cell lines, for the first time. Results indicate that IF protects against IR-induced apoptosis in U937 cells in the time- and concentration- dependent manner. IF decreases IR-induced intracellular ROS generation, especially hydroxyl radicals formation, inhibits IR-induced mitochondrial membrane potential loss and reduces IR-induced high intracellular Ca2+ levels regardless of ER stress. IF down-regulates the expression of caspase-3, phospho-JNK, phospho-p38 and activates Bax in mitochondria. IF inhibits cytochrome c release from mitochondria to cytosol. IF also moderates IR-induced Fas externalization and caspase-8 activation. IF also exhibits significant protection against IR-induced cell death in other leukemia cell lines such as Molt-4 cells and HL60 cells regardless of p53. Taken together, the data demonstrate that IF protects leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in a p53-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号