首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and alpha-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 microg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.  相似文献   

2.
Static muscular contraction reflexly increases arterial blood pressure and heart rate. One possible mechanism evoking this reflex is that potassium accumulates in the interstitial space of a working muscle to stimulate group III and IV afferents whose activation in turn evokes a pressor response. The responses of group III and IV muscle afferents to increases in interstitial potassium concentrations within the range evoked by static contraction are unknown. Thus we injected potassium chloride into the gracilis artery of anesthetized dogs while we measured both gracilis muscle interstitial potassium concentrations with potassium-selective electrodes and the impulse activity of afferents in the gracilis nerve. We found that increasing interstitial potassium concentrations to levels similar to those seen during static contraction stimulated 14 of 16 group III and 29 of 31 group IV afferents. The responses of the afferents to potassium were concentration dependent. The typical response to potassium consisted of a burst of impulses, an effect that returned to control firing rates within 26 s, even though interstitial potassium concentrations remained elevated for several minutes. Although our results suggest that potassium may play a role in initiating the reflex cardiovascular responses to static muscular contraction, the accumulation of this ion does not appear to be solely responsible for maintaining the pressor response for the duration of the contraction.  相似文献   

3.
In humans, the pressor and muscle sympathetic nerve responses to static exercise are less in women than in men. The difference has been attributed to the effect of estrogen on the exercise pressor reflex. Estrogen receptors are abundant in areas of the dorsal horn receiving input from group III and IV muscle afferents, which comprise the sensory limb of the exercise pressor reflex arc. These findings prompted us to investigate the effect of estrogen on the spinal pathway of the exercise pressor reflex arc. Previously, we found that the threshold concentration of 17beta-estradiol needed to attenuate the exercise pressor reflex in male decerebrate cats was 10 microg/ml (Schmitt PM and Kaufman MP. J Appl Physiol 94: 1431-1436, 2003). The threshold concentration for female cats, however, is not known. Consequently, we applied 17beta-estradiol to a well covering the L6-S1 spinal cord in decerebrate female cats. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that the pressor response to contraction averaged 38 +/- 7 mmHg before the application of 17beta-estradiol (0.01 microg/ml) to the spinal cord, whereas it averaged only 23 +/- 4 mmHg 30 min after application (P < 0.05). Recovery of the pressor response to contraction was not obtained for 2 h after application of 17beta-estradiol. Application of 17beta-estradiol in a dose of 0.001 microg/ml had no effect on the exercise pressor reflex (n = 5). We conclude that the concentration of 17beta-estradiol required to attenuate the exercise pressor reflex is 1,000 times more dilute in female cats than that needed to attenuate this reflex in male cats.  相似文献   

4.
Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because this agent has been shown to attenuate the reflex pressor response to injection of lactic acid into the arterial supply of skeletal muscle. The possibility exists, however, that amiloride may also block mechanical stimuli evoking the exercise pressor reflex. The mechanical component of the reflex can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of contraction. During this period of time, the sudden tension developed by contraction onset briskly discharges mechanoreceptors, whereas it has little effect on the discharge of metaboreceptors. We, therefore, examined the effect of amiloride (0.5 microg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to static contraction of the triceps surae muscles in decerebrated cats. We found that amiloride significantly attenuated the pressor and renal sympathetic responses to contraction; for the latter variable, the attenuation started 10 s after the onset of contraction. Our findings lead us to conclude that acid-sensing ion channels and epithelial sodium channels play little, if any, role in evoking the mechanical component of the exercise pressor reflex.  相似文献   

5.
The renal vasoconstriction induced by the sympathetic outflow during exercise serves to direct blood flow from the kidney toward the exercising muscles. The renal circulation seems to be particularly important in this regard, because it receives a substantial part of the cardiac output, which in resting humans has been estimated to be 20%. The role of group III mechanoreceptors in causing the reflex renal sympathetic response to static contraction remains an open question. To shed some light on this question, we recorded the renal sympathetic nerve responses to static contraction before and after injection of gadolinium into the arterial supply of the statically contracting triceps surae muscles of decerebrate unanesthetized and chloralose-anesthetized cats. Gadolinium has been shown to be a selective blocker of mechanogated channels in thin-fiber muscle afferents, which comprise the afferent arm of the exercise pressor reflex arc. In decerebrate (n = 15) and chloralose-anesthetized (n = 12) cats, we found that gadolinium (10 mM; 1 ml) significantly attenuated the renal sympathetic nerve and pressor responses to static contraction (60 s) after a latent period of 60 min; both responses recovered after a latent period of 120 min. We conclude that thin-fiber mechanoreceptors supplying contracting muscle are involved in some of the renal vasoconstriction evoked by the exercise pressor reflex.  相似文献   

6.
In hypertension, the blood pressure response to exercise is exaggerated. We demonstrated previously that this heightened pressor response to physical activity is mediated by an overactive skeletal muscle exercise pressor reflex (EPR), with important contributions from its metaboreflex and mechanoreflex components. However, the mechanisms driving the abnormal blood pressure response to EPR activation are largely unknown. Recent evidence in humans suggests that the muscle metaboreflex partially mediates the enhanced EPR-induced pressor response via abnormally large changes in sympathetic nerve activity (SNA). Whether the muscle mechanoreflex induces similarly exaggerated alterations in SNA in hypertension remains unknown, as does the role of the mechanoreceptors mediating muscle reflex activity. To address these issues, the EPR was selectively activated by electrically inducing hindlimb muscle contraction in decerebrate normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Stimulation of the EPR evoked significantly larger increases in mean arterial pressure (MAP) and renal SNA (RSNA) in SHR compared with WKY (ΔRSNA from baseline: 140 ± 11 vs. 48 ± 8%). The mechanoreflex was stimulated by stretching hindlimb muscle which likewise elicited significantly greater elevations in MAP and RSNA in SHR than WKY (ΔRSNA from baseline: 105 ± 11 vs. 35 ± 7%). Blockade of mechanoreceptors in muscle with gadolinium significantly attenuated the MAP and RSNA responses to contraction and stretch in SHR. These data suggest that 1) the exaggerated pressor response to activation of the EPR and muscle mechanoreflex in hypertension is mediated by abnormally large reflex-induced augmentations in SNA and 2) this accentuated sympathetic responsiveness is evoked, in part, by stimulation of muscle mechanoreceptors.  相似文献   

7.
Recent evidence has demonstrated that arginine vasopressin (AVP) may modulate primary afferent activity of nociceptors in the dorsal horn of the spinal cord. Because nociceptors are group III and IV afferents, spinal AVP also may modulate the activity of group III and IV afferents that cause reflex cardiovascular responses to muscle contraction. Thus, we compared the pressor (mean arterial pressure), myocardial contractile (dP/dt), and heart rate (HR) responses to electrically induced static contraction of the cat hindlimb before and after lumbar intrathecal (IT) injection (L1-L7) of AVP (n = 9), the V1 receptor antagonist d(CH2)5Tyr(Me)AVP (n = 6), the V2 receptor antagonist d(CH2)5[D-Ile2,Ile4,Ala-NH2(9)]AVP (n = 6), and the V2 agonist [Val4,D]AVP (n = 8). After IT injection of AVP (0.1 or 1 nmol) the pressor and contractile responses to static contraction were attenuated by 55 and 44%, respectively. HR was unchanged. Forty-five to 60 min after AVP injection, the contraction-induced pressor and contractile responses were restored to control levels. V1 receptor blockade augmented contraction-induced increases in mean arterial pressure (36%) and dP/dt (49%) but not HR. V2 receptor blockade had no effect on the cardiovascular response to contraction, whereas selective V2 stimulation attenuated the dP/dt (-20%) and HR (-33%) responses but not the pressor response. These results suggest that AVP attenuates the reflex cardiovascular response to contraction by modulating sensory nerve transmission from contracting muscle primarily via a V1 receptor mechanism in the lumbar spinal cord.  相似文献   

8.
The exercise pressor reflex is evoked by both mechanical and metabolic stimuli. Tendon stretch does not increase muscle metabolism and therefore is used to investigate the mechanical component of the exercise pressor reflex. An important assumption underlying the use of tendon stretch to study the mechanical component of the exercise pressor reflex is that stretch stimulates the same group III mechanosensitive muscle afferents as does static contraction. We have tested the veracity of this assumption in decerebrated cats by comparing the responses of group III and IV muscle afferents to tendon stretch with those to static contraction. The tension-time indexes as well as the peak tension development for both maneuvers did not significantly differ. We found that static contraction of the triceps surae muscles stimulated 18 of 30 group III afferents and 8 of 11 group IV afferents. Similarly, tendon stretch stimulated 14 of 30 group III afferents and 3 of 11 group IV afferents. However, of the 18 group III afferents that responded to static contraction and the 14 group III afferents that responded to tendon stretch, only 7 responded to both stimuli. On average, the conduction velocities of the 18 group III afferents that responded to static contraction (11.6 +/- 1.6 m/s) were significantly slower (P = 0.03) than those of the 14 group III afferents that responded to tendon stretch (16.7 +/- 1.5 m/s). We have concluded that tendon stretch stimulated a different population of group III mechanosensitive muscle afferents than did static contraction. Although there is some overlap between the two populations of group III mechanosensitive afferents, it is not large, comprising less than half of the group III afferents responding to static contraction.  相似文献   

9.
The finding that pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), a P2 antagonist, attenuated the pressor response to calcaneal tendon stretch, a purely mechanical stimulus, raises the possibility that P2 receptors sensitize mechanoreceptors to static contraction of the triceps surae muscles. The mechanical component of the exercise pressor reflex, which is evoked by static contraction, can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of this maneuver. During this period of time, group III mechanoreceptors often discharge explosively in response to the sudden tension developed at the onset of contraction. In decerebrated cats, we, therefore, examined the effect of PPADS (10 mg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to contraction and stretch. We found that PPADS significantly attenuated the renal sympathetic response to contraction, with the effect starting 2 s after its onset and continuing throughout its 60-s period. PPADS also significantly attenuated the renal sympathetic nerve response to stretch, but did so after a latency of 10 s. Our findings lead us to conclude that P2 receptors sensitize group III muscle afferents to contraction. The difference in the onset latency between the PPADS-induced attenuation of the renal sympathetic response to contraction and the renal sympathetic response to stretch is probably due to the sensitivities of different populations of group III afferents to ATP released during contraction and stretch.  相似文献   

10.
Group III and IV receptors of skeletal muscle   总被引:2,自引:0,他引:2  
The single largest group of sensory fibres leaving skeletal muscles are small myelinated or unmyelinated (groups III and IV) fibres. The receptors served by these small fibres have not been subjected to the same intensive study that receptors served by group I and II fibres have received. The evidence so far available suggests that receptors with group III and IV axons play a particular role in nociception and also subserve a wide range of sensory modalities. Despite their role in nociception, the primary afferent fibres from these receptors do not project to the substantia gelatinosa. A significant percentage of group III receptors are sensitive to stretch and have been thought to be the receptor source that initiates the clasp-knife reflex. Other group III receptors respond to chemical change within the muscle and have been implicated in the initiation of cardiovascular reflexes and the changes in muscle blood flow that accompany exercise. Group IV receptors also include high threshold mechanoreceptors and nociceptors. It is well known that encapsulated receptors are quite unevenly distributed within skeletal muscles and in different skeletal muscles. Preliminary evidence suggests that the variation in receptor content is not confined to encapsulated receptors, but that the receptors served by group III and IV afferents may have receptive properties that vary from muscle to muscle.  相似文献   

11.
Although mesencephalic locomotor region (MLR) stimulation and the exercise pressor reflex have been shown to increase whole nerve renal sympathetic activity, it is not known whether these mechanisms converge onto the same population of renal sympathetic postganglionic efferents. In decerebrate cats, we examined the responses of single renal sympathetic postganglionic efferents to stimulation of the MLR and the exercise pressor reflex (i.e., static contraction of the triceps surae muscles). We found that, in most instances (24 of 28 fibers), either MLR stimulation or the muscle reflex, but not both, increased the discharge of renal postganglionic sympathetic efferents. In addition, we found that renal sympathetic efferents that responded to static contraction while the muscles were freely perfused responded more vigorously to static contraction during circulatory arrest. Moreover, stretch of the calcaneal (Achilles) tendon stimulated the same renal sympathetic efferents as did static contraction. These findings suggest that MLR stimulation and the exercise pressor reflex do not converge onto the same renal sympathetic postganglionic efferents.  相似文献   

12.
Injection into the arterial supply of skeletal muscle of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a P2 receptor antagonist, has been shown previously to attenuate the reflex pressor responses to both static contraction and to tendon stretch. In decerebrated cats, we tested the hypothesis that PPADS attenuated the responses of groups III and IV muscle afferents to static contraction as well as to tendon stretch. We found that injection of PPADS (10 mg/kg) into the popliteal artery attenuated the responses of both group III (n = 16 cats) and group IV afferents (n = 14 cats) to static contraction. Specifically, static contraction before PPADS injection increased the discharge rate of the group III afferents from 0.1 +/- 0.05 to 1.6 +/- 0.5 impulses/s, whereas contraction after PPADS injection increased the discharge of the group III afferents from 0.2 +/- 0.1 to only 1.0 +/- 0.5 impulses/s (P < 0.05). Likewise, static contraction before PPADS injection increased the discharge rate of the group IV afferents from 0.3 +/- 0.1 to 1.0 +/- 0.3 impulses/s, whereas contraction after PPADS injection increased the discharge of the group IV afferents from 0.2 +/- 0.1 to only 0.3 +/- 0.1 impulses/s (P < 0.05). In addition, PPADS significantly attenuated the responses of group III afferents to tendon stretch but had no effect on the responses of group IV afferents. Our findings suggest that both groups III and IV afferents are responsible for evoking the purinergic component of the exercise pressor reflex, whereas only group III afferents are responsible for evoking the purinergic component of the muscle mechanoreflex that is evoked by tendon stretch.  相似文献   

13.
Cyclooxygenase metabolites stimulate or sensitize group III and IV muscle afferents, which comprise the sensory arm of the exercise pressor reflex. The thromboxane (TP) receptor binds several of these metabolites, whose concentrations in the muscle interstitium are increased by exercise under freely perfused conditions and even more so under ischemic conditions, which occur in peripheral artery disease. We showed that the exercise pressor reflex is greater in rats with simulated peripheral artery disease than in rats with freely perfused limbs. These findings prompted us to test the hypothesis that the TP receptor contributes to the exaggerated exercise pressor reflex occurring in a rat model of peripheral artery disease. We compared the cardiovascular responses to static contraction and stretch before and after femoral arterial injections of daltroban (80 μg), a TP receptor antagonist. We performed these experiments in decerebrate rats whose femoral arteries were ligated 72 h before the experiment (a model of simulated peripheral artery disease) and in control rats whose hindlimbs were freely perfused. Daltroban reduced the pressor response to static contraction in both freely perfused (n = 6; before: Δ12 ± 2 mmHg, after: Δ6 ± 2 mmHg, P = 0.024) and 72-h-ligated rats (n = 10; before: Δ25 ± 3 mmHg, after: Δ7 ± 4 mmHg, P = 0.001). Likewise, daltroban reduced the pressor response to stretch in the freely perfused group (n = 9; before: Δ30 ± 3 mmHg, after: Δ17 ± 3 mmHg, P < 0.0001) and in the ligated group (n = 11; before: Δ37 ± 5 mmHg, after: Δ23 ± 3 mmHg, P = 0.016). Intravenous injections of daltroban had no effect on the pressor response to contraction. We conclude that the TP receptor contributes to the pressor responses evoked by contraction and stretch in both freely perfused rats and rats with simulated peripheral artery disease.  相似文献   

14.
Repetitive-twitch contraction of the hindlimb muscles in anesthetized rabbits consistently evokes a reflex depressor response, whereas this type of contraction in anesthetized cats evokes a reflex pressor response in about one-half of the preparations tested. Rapidly conducting group III fibers appear to comprise the afferent arm of the reflex arc, evoking the depressor response to twitch contraction in rabbits because electrical stimulation of their axons reflexly decreases arterial pressure. In contrast, electrical stimulation of the axons of slowly conducting group III and group IV afferents reflexly increases arterial pressure in rabbits. In the present study, we examined the discharge properties of group III and IV muscle afferents and found that the former (i.e., 13 of 20), but not the latter (i.e., 0 of 10), were stimulated by 5 min of repetitive-twitch contraction (1 Hz) of the rabbit triceps surae muscles. Moreover, most of the group III afferents responding to contraction appeared to be mechanically sensitive, discharging in synchrony with the muscle twitch. On average, rapidly conducting group III afferents responded for the 5-min duration of 1-Hz repetitive-twitch contraction, whereas slowly conducting group III afferents responded only for the first 2 min of contraction. We conclude that rapidly conducting group III afferents, which are mechanically sensitive, are primarily responsible for evoking the reflex depressor response to repetitive-twitch contractions in anesthetized rabbits.  相似文献   

15.
We have tested the hypothesis that intrathecal injections of opioid peptides attenuate the reflex pressor and ventilatory responses to static contraction of the triceps surae muscles of chloralose-anesthetized cats. We found that before intrathecal injections of [D-Ala2]Met-enkephalinamide (100 micrograms in 0.2 ml), static contraction increased mean arterial pressure and ventilation by 32 +/- 5 (SE) mmHg and 227 +/- 61 (SE) ml/min, whereas after injection of this opioid peptide, static contraction increased mean arterial pressure and ventilation by only 15 +/- 5 mmHg and 37 +/- 33 ml/min, respectively. The attenuation of both the pressor and ventilatory responses to static contraction by [D-Ala2]Met-enkephalinamide were statistically significant (P less than 0.05). Moreover, the attenuation was probably not caused by an opioid-induced withdrawal of sympathetic outflow because [D-Ala2]Met-enkephalinamide had no effect on the pressor and ventilatory responses evoked by high-intensity electrical stimulation of the central cut end of the sciatic nerve. In addition, intrathecal injection of peptides that were highly selective agonists for either the opioid mu- or delta-receptor attenuated the reflex responses to static contraction. Naloxone (1,000 micrograms), injected intrathecally, prevented the attenuation of the reflex responses to contraction by opioid peptides. We speculate that the opioid-induced attenuation of the reflex pressor and ventilatory responses to static contraction may have been due to suppression of substance P release from group III and IV muscle afferents.  相似文献   

16.
An exaggerated exercise pressor reflex (EPR) contributes to exercise intolerance and excessive sympathoexcitation in the chronic heart failure (CHF) state, which is prevented by exercise training (ExT) at an early stage in the development of CHF. We hypothesized that ExT has a beneficial effect on the exaggerated EPR by improving the dysfunction of muscle afferents in CHF. We recorded the discharge of mechanically sensitive (group III) and metabolically sensitive (group IV) afferents in response to static contraction, passive stretch, and hindlimb intra-arterial injection of capsaicin in sham+sedentary (Sed), sham+ExT, CHF+Sed, and CHF+ExT rats. Compared with sham+Sed rats, CHF+Sed rats exhibited greater responses of group III afferents to contraction and stretch, whereas the responses of group IV afferents to contraction and capsaicin were blunted. ExT prevented the sensitization of group III responses to contraction or stretch and partially prevented the blunted group IV responses to contraction or capsaicin in CHF rats. Furthermore, we investigated whether purinergic 2X (P2X) and transient receptor potential vanilloid 1 (TRPV1) receptors mediate the altered sensitivity of muscle afferents by ExT in CHF. We found that the upregulated P2X and downregulated TRPV1 receptors in L4/5 dorsal root ganglia of CHF rats were normalized by ExT. Hindlimb intra-arterial infusion of a P2X antagonist attenuated the group III response to contraction or stretch in CHF rats to a greater extent than in sham rats, which was normalized by ExT. These findings suggest that ExT improves the abnormal sensitization of muscle afferents in CHF at least, in part, via restoring the dysfunction of P2X and TRPV1 receptors.  相似文献   

17.
Muscle metabolic by-products stimulate thin fiber muscle afferent nerves and evoke reflex increases in blood pressure and sympathetic nerve activity. Previous studies reported that chemically sensitive transient receptor potential vanilloid type 1 (TRPV1) channels present on sensory muscle afferent neurons have an important impact on sympathetically mediated cardiovascular responses. The reflex-mediated reduction in blood flow to skeletal muscle leads to limited exercise capacity in patients with peripheral arterial occlusive disease. Thus, in this study, we tested the hypothesis that the expression of enhanced TRPV1 receptor and its responsiveness in primary afferent neurons innervating muscles initiate exaggerated reflex sympathetic responses after vascular insufficiency to the muscle. Muscle vascular insufficiency was induced by the femoral artery ligation in rats for 24 h. Our data show that 1) the ligation surgery leads to the upregulation of TRPV1 expression in the dorsal root ganglion; 2) the magnitude of the dorsal root ganglion neuron TRPV1 response induced by capsaicin is greater in vascular insufficiency (4.0 +/- 0.31 nA, P < 0.05 vs. sham-operated control) than that in sham-operated control (2.9 +/- 0.23 nA); and 3) renal sympathetic nerve activity and mean arterial pressure responses to capsaicin (0.5 microg/kg body wt) are also enhanced by vascular insufficiency (54 +/- 11%, 9 +/- 2 mmHg in sham-operated controls vs. 98 +/- 13%, 33 +/- 5 mmHg after vascular insufficiency, P < 0.05). In conclusion, sympathetic nerve responses to the activation of metabolite-sensitive TRPV1 receptors are augmented in rats with the femoral artery occlusion compared with sham-operated control animals, due to alterations in the expression of TRPV1 receptor and its responsiveness in sensory neurons.  相似文献   

18.
Groups III and IV afferents carry sensory information regarding the muscle exercise pressor reflex, although the central integrating circuits of the reflex in humans are still poorly defined. Emerging evidence reports that the periaqueductal gray (PAG) could be a major site for integrating the "central command" component that initiates the cardiovascular response to exercise, since this area is activated during exercise and direct stimulation of the dorsal PAG causes an increase in arterial blood pressure (ABP) in humans. Here we recorded local field potentials (LFPs) from various "deep" brain nuclei during exercise tasks designed to elicit the muscle pressor reflex. The patients studied had undergone neurosurgery for the treatment of movement or pain disorders, thus had electrodes implanted stereotactically either in the PAG, subthalamic nucleus, globus pallidus interna, thalamus, hypothalamus, or anterior cingulate cortex. Fast Fourier transform analysis was applied to the neurograms to identify the power of fundamental spectral frequencies. Our PAG patients showed significant increases in LFP power at frequencies from 4 to 8 Hz (P < 0.01), 8 to 12 Hz (P < 0.001), and 12 to 25 Hz (P < 0.001). These periods were associated with maintained elevated ABP during muscle occlusion following exercise. Further increases in exercise intensity resulted in corresponding increases in PAG activity and ABP. No significant changes were seen in the activity of other nuclei during occlusion. These electrophysiological data provide direct evidence for a role of the PAG in the integrating neurocircuitry of the exercise pressor reflex in humans.  相似文献   

19.
In women, sympathoexcitation during static handgrip exercise is reduced during the follicular phase of the ovarian cycle compared with the menstrual phase. Previous animal studies have demonstrated that estrogen modulates the exercise pressor reflex, a sympathoexcitatory mechanism originating in contracting skeletal muscle. The present study was conducted in female rats to determine whether skeletal muscle contraction-evoked reflex sympathoexcitation fluctuates with the estrous cycle. The estrous cycle was judged by vaginal smear. Plasma concentrations of estrogen were significantly (P < 0.05) higher in rats during the proestrus phase of the estrus cycle than those during the diestrus phase. In decerebrate rats, either electrically induced 30-s continuous static contraction of the hindlimb muscle or 30-s passive stretch of Achilles tendon (a maneuver that selectively stimulates mechanically sensitive muscle afferents) evoked less renal sympathoexcitatory and pressor responses in the proestrus animals than in the diestrus animals. Renal sympathoexcitatory response to 1-min intermittent (1- to 4-s stimulation to relaxation) bouts of static contraction was also significantly less in the proestrus rats than that in the diestrus rats. In ovariectomized female rats, 17β-estradiol applied into a well covering the dorsal surface of the lumbar spinal cord significantly reduced skeletal muscle contraction-evoked responses. These observations demonstrate that the exercise pressor reflex function and its mechanical component fluctuate with the estrous cycle in rats. Estrogen may cause these fluctuations through its attenuating effects on the spinal component of the reflex arc.  相似文献   

20.
The reflex pressor response evoked by static muscular contraction is widely believed to be caused by the stimulation of group III and IV afferents. Although the specific nature of the contraction-induced stimulus to these thin-fiber afferents is unknown, they are thought to be stimulated in part by a condition arising from a mismatch between blood supply and demand in the exercising muscle. Hypoxia, a condition found in skeletal muscle during such a mismatch, may stimulate these afferents. We have therefore tested the hypothesis that perfusion of the triceps surae muscles with hypoxic blood stimulates group III and IV afferents in barbiturate-anesthetized cats. We found that 3-3.5 min of hypoxia with the triceps surae muscles at rest significantly (P < 0.05) increased the average discharge rate of contraction-sensitive group IV afferents but had no effect on the average discharge rate of contraction-sensitive group III afferents. Hypoxia had only trivial effects on the discharge of contraction-insensitive group III and IV afferents. Hypoxia stimulated 4 of 11 contraction-sensitive group IV afferents and 2 of 13 contraction-sensitive group III afferents. The responses of the afferents stimulated by hypoxia were small in magnitude. Hypoxia with the muscles at rest appeared to have no effect on either hydrogen or lactate ion concentrations in the femoral venous blood. In addition, hypoxia increased the responses to contraction in only 3 of 22 group III and 4 of 21 group IV afferents tested. We conclude that muscle tissue hypoxia is a minor stimulus to afferents that sense a mismatch between blood supply and demand during static contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号