首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the detection of viable probiotic bacteria following their ingestion and passage through the gastrointestinal tract (GIT) has been well documented, their mucosal attachment in vivo is more difficult to assess. In this study, we investigated the survival and mucosal attachment of multi-strain probiotics transiting the rat GIT. Rats were administered a commercial mixture of the intestinal probiotics Lactobacillus acidophilus LA742, Lactobacillus rhamnosus L2H and Bifidobacterium lactis HN019 and the oral probiotic Streptococcus salivarius K12 every 12 h for 3 days. Intestinal contents, mucus and faeces were tested 6 h, 3 days and 7 days after the last dose by strain-specific enumeration on selective media and by denaturing gradient gel electrophoresis. At 6 h, viable cells and DNA corresponding to all four probiotics were detected in the faeces and in both the lumen contents and mucus layers of the ileum and colon. Viable probiotic cells of B. lactis and L. rhamnosus were detected for 7 days and L. acidophilus for 3 days after the last dose. B. lactis and L. rhamnosus persisted in the ileal mucus and colon contents, whereas the retention of L. acidophilus appeared to be relatively higher in colonic mucus. No viable cells of S. salivarius K12 were detected in any of the samples at either day 3 or 7. The study demonstrates that probiotic strains of intestinal origin but not of oral origin exhibit temporary colonisation of the rat GIT and that these strains may have differing relative affinities for colonic and ileal mucosa.  相似文献   

2.
Chemoresistance is one of the major problems of colon cancer treatment. In tumors, glycolytic metabolism has been identified to promote cell proliferation and chemoresistance. However, the molecular mechanisms underlying glycolytic metabolism and chemoresistance in colon cancer remains enigmatic. Hence, this research was designed to explore the mechanism underlying the OLR1/c-MYC/SULT2B1 axis in the regulation of glycolytic metabolism, to affect colon cancer cell proliferation and chemoresistance. Colon cancer tissues and LoVo cells were attained, where OLR1, c-MYC, and SULT2B1 expression was detected by immunohistochemistry, RT-qPCR, and western blot analysis. Next, ectopic expression and knockdown assays were implemented in LoVo cells. Cell proliferation was detected by MTS assay and clone formation. Extracellular acidification, glucose uptake, lactate production, ATP/ADP ratio, and GLUT1 and LDHA expression were measured to evaluate glycolytic metabolism. Then, the transfected cells were treated with chemotherapeutic agents to assess drug resistance by MTS experiments and P-gp and SMAD4 expression by RT-qPCR. A nude mouse model of colon cancer transplantation was constructed for in vivo verification. The levels of OLR1, c-MYC, and SULT2B1 were upregulated in colon cancer tissues and cells. Mechanistically, OLR1 increased c-MYC expression to upregulate SULT2B1 in colon cancer cells. Moreover, knockdown of OLR1, c-MYC, or SULT2B1 weakened glycolytic metabolism, proliferation, and chemoresistance of colon cancer cells. In vivo experiments authenticated that OLR1 knockdown repressed the tumorigenesis and chemoresistance in nude mice by downregulating c-MYC and SULT2B1. Conclusively, knockdown of OLR1 might diminish SULT2B1 expression by downregulating c-MYC, thereby restraining glycolytic metabolism to inhibit colon cancer cell proliferation and chemoresistance.Subject terms: Cancer, Cancer therapy  相似文献   

3.
The aim of this study was to analyze the cell envelope components and surface properties of two phenotypes of Lactobacillus rhamnosus isolated from the human gastrointestinal tract. The ability of the bacteria to adhere to human intestinal cells and to aggregate with other bacteria was determined. L. rhamnosus strains E/N and PEN differed with regard to the presence of exopolysaccharides (EPS) and specific surface proteins. Transmission electron microscopy showed differences in the structure of the outer cell surface of the strains tested. Bacterial surface properties were analyzed by Fourier transform infrared spectroscopy, fatty acid methyl esters and hydrophobicity assays. Aggregation capacity and adhesion of the tested strains to the human colon adenocarcinoma cell line HT29 was determined. The results indicated a high adhesion and aggregation ability of L. rhamnosus PEN, which possessed specific surface proteins, had a unique fatty acid content, and did not synthesize EPS. Adherence of L. rhamnosus was dependent on specific interactions and was promoted by surface proteins (42–114 kDa) and specific fatty acids. Polysaccharides likely hindered bacterial adhesion and aggregation by masking protein receptors. This study provides information on the cell envelope constituents of lactobacilli that influence bacterial aggregation and adhesion to intestinal cells. This knowledge will help to understand better their specific contribution in commensal–host interactions and adaptation to this ecological niche.  相似文献   

4.
The aim of the present study was to evaluate the potential of Lactobacillus plantarum CS24.2 to antagonize Escherichia coli adhesion and modulate expression of the responses by HT‐29 cells of inflammatory molecules to E. coli adhesion. Experiments were performed under different adhesion conditions and findings compared with the responses of Lactobacillus rhamnosus GG. Tests of competitive adhesion, adhesion inhibition and displacement assays were performed for lactobacilli (L. rhamnosus GG and L. plantarum CS24.2) and E. coli O26:H11 to HT‐29 cells. Both the lactobacilli significantly reduced E. coli adhesion to HT‐29 cells (P < 0.05). The ability of lactobacilli to modulate tumor necrosis factor‐α and interleukin‐8 expression was analyzed in HT‐29 cells stimulated with E. coli using qRT‐PCR. L. plantarum CS24.2 significantly down regulated expression of both the genes induced by E. coli in HT‐29 cells at 6 hr as well as 24 hr, which was more significant than the corresponding findings for L. rhamnosus GG. The present findings suggest that L. plantarum CS24.2 inhibits pathogen adhesion to a similar extent as does the established probiotic strain L. rhamnosus GG. It may also attenuate tumor necrosis factor‐α and interleukin‐8 expression in HT‐29 cells stimulated with E. coli.  相似文献   

5.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8–125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62–1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

6.
Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosisinducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties.  相似文献   

7.
Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.  相似文献   

8.
Our previous studies have demonstrated the oxidative stress properties of sodium ascorbate (SAA) and its benzaldehyde derivative (SBA) on cancer cell lines, but the molecular mechanisms mediating their cytotoxicity remain unclear. In this study, we treated human colon cancer HT‐29 cells with SAA and SBA, and found a significant exposure time‐dependent increase of cytotoxicity in both treatments, with a higher cytotoxicity for 24 h with SAA (IC50 = 5 mM) than SBA (IC50 = 10 mM). A short‐term treatment of cells with 10 mM SAA for 2 h revealed a destabilization of the lysosomes and subsequent induction of cell death, whereas 10 mM SBA triggered a remarkable production of reactive oxidative species, phosphorylation of survival kinase AKT, expression of cyclin kinase‐dependent inhibitor p21, and induction of transient growth arrest. The crucial role of p21 mediating this cytotoxicity was confirmed by isogenic derivatives of the human colon carcinoma HCT116 cell lines (p21+/+ and p21?/?), and immunoprecipitation studies with p21 antibody. The SAA cytotoxicity was blocked by co‐incubation with catalase, whereas the SBA cytotoxicity and its subsequent growth arrest were abolished by N‐acetyl‐L‐cysteine (NAC), but was not affected by PI3K phosphorylation inhibitor LY294002, or catalase, suggesting two separated oxidative stress pathways were mediated by these two ascorbates. In addition, neither active caspase 3 nor apoptotic bodies but autophagic vacuoles associated with increased LC3‐II were found in SBA‐treated HT‐29 cells; implicating that SBA induced AKT phosphorylation‐autophagy and p21‐growth arrest in colon cancer HT‐29 cells through an NAC‐inhibitable oxidative stress pathway. J. Cell. Biochem. 111: 412–424, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Bifidobacterium animalis subsp. lactis is a probiotic bacterium that naturally inhabits the guts of most mammals, including humans. Here we report the complete genome sequence of B. animalis subsp. lactis AD011 that was isolated from an infant fecal sample. Biological functions encoded in a single circular chromosome of 1,933,695 bp, smallest among the completely sequenced bifidobacterial genomes, are suggestive of their probiotic functions, such as utilization of bifidogenic factors and a variety of glycosidic enzymes and biosynthesis of polysaccharides.  相似文献   

10.
The main goal of our study was to evaluate the effect of the individual administration of five lyophilized lactic acid bacteria strains (Lactobacillus fermentum 428ST, Lactobacillus rhamnosus E4.2, Lactobacillus plantarum FCA3, Lactobacillus sp. 34.1, Weissella paramesenteroides FT1a) against the in vitro simulated microbiota of the human colon using the GIS1 system. The influence on the metabolic activity was also assessed by quantitative determination of proteins and polysaccharides at each segment of human colon. The obtained results indicated that the lactic acid bacteria L. rhamnosus E4.2 and W. paramesenteroides FTa1 had better efficiency in synthesising exopolysaccharides and also a better probiotic potential and therefore could be recommended for use in probiotics products or food industry.  相似文献   

11.
Lactic acid bacteria (LAB) are generally sensitive to hydrogen peroxide (H2O2), Lactobacillus sakei YSI8 is one of the very few LAB strains able to degrade H2O2 through the action of a heme-dependent catalase. Lactobacillus rhamnosus strains are very important probiotic starter cultures in meat product fermentation, but they are deficient in catalase. In this study, the effect of heterologous expression of L. sakei catalase gene katA in L. rhamnosus on its oxidative stress resistance was tested. The recombinant L. rhamnosus AS 1.2466 was able to decompose H2O2 and the catalase activity reached 2.85 μmol H2O2/min/108 c.f.u. Furthermore, the expression of the katA gene in L. rhamnosus conferred enhanced oxidative resistance on the host. The survival ratios after short-term H2O2 challenge were increased 600 and 104-fold at exponential and stationary phase, respectively. Further, viable cells were 100-fold higher in long-term aerated cultures. Simulation experiment demonstrated that both growth and catalase activity of recombinant L. rhamnosus displayed high stability under environmental conditions similar to those encountered during sausage fermentation.  相似文献   

12.
Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this “depowered” GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of these effects with the expression pattern and signaling properties of GSTP . This has overcome the GPx-mimetic paradigm proposed for Se-organic drugs with a more pragmatic concept of GSTP signaling modulators.  相似文献   

13.
Aims: To evaluate the probiotic properties of strains isolated from boza, a traditional beverage produced from cereals. Methods and Results: The strains survived low pH conditions (pH 3·0), grew well at pH 9·0 and were not inhibited by the presence of 0·3% (w/v) oxbile. Cytotoxicity levels of the bacteriocins, expressed as CC50, ranged from 38 to 3776 μg ml?1. Bacteriocin bacST284BZ revealed high activity (EC50 = 735 μg ml?1) against herpes simplex virus type 1. Growth of Mycobacterium tuberculosis was 69% repressed after 5 days in the presence of bacST194BZ. Various levels of auto‐cell aggregation and co‐aggregation with Listeria innocua LMG 13568 were observed. Adhesion of the probiotic strains to HT‐29 cells ranged from 18 to 22%. Conclusions: Boza is a rich source of probiotic lactic acid bacteria. All strains survived conditions simulating the gastrointestinal tract and produced bacteriocins active against a number of pathogens. Adherence to HT‐29 and Caco‐2 cells was within the range reported for Lactobacillus rhamnosus GG, a well‐known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Boza contains a number of different probiotic lactic acid bacteria and could be marketed as a functional food product.  相似文献   

14.
The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G0/G1 phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.  相似文献   

15.
Oroidin (1), (E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dibromo-1H-pyrrole-2-carboxamide, is a pyrrole alkaloid isolated from the marine sponge Agelas oroides. Routine screening in a panel of twelve cancer cell lines revealed 1 to be poorly cytotoxic with the 50% growth inhibition concentration (GI50) of 42 μM in MCF-7 (breast) cells and 24 μM in A2780 (ovarian) cells and >50 μM in all other cell lines tested. The development of eight focused libraries comprising thirty compounds total identified N-(biphenyl-4-ylmethyl)-1H-pyrrole-2-carboxamide (4l), N-benzyl-4,5-dibromo-1H-pyrrole-2-carboxamide (5a) and N-(biphenyl-4-ylmethyl)-4,5-dibromo-1H-pyrrole-2-carboxamide (5l) as potent inhibitors of cell growth in our panel of cell lines. Of these compounds GI50 values of <5 μM were observed with 4l against HT29 (colon) and SW480 (colon); 5a against HT29; and 5l against HT29, SW480, MCF-7, A431 (skin), Du145 (prostate), BE2-C (neuroblastoma) and MIA (pancreas) cell lines. As a cancer class, colon cancer appears to be more sensitive to the oroidin series of compounds, with analogue 5l being the most active.  相似文献   

16.
17.
Fucosyl-N-acetylglucosamine disaccharides are important core structures that form part of human mucosal and milk glyco-complexes. We have previously shown that AlfB and AlfC α-L-fucosidases from Lactobacillus casei are able to synthesize fucosyl-α-1,3--N-acetylglucosamine (Fuc-α1,3-GlcNAc) and fucosyl-α-1,6-N-acetylglucosamine (Fuc-α1,6-GlcNAc), respectively, in transglycosylation reactions. Here, these reactions were performed in a semipreparative scale, and the produced disaccharides were purified. The maximum yields obtained of Fuc-α1,3-GlcNAc and Fuc-α1,6-GlcNAc were 4.2 and 9.3 g/l, respectively. The purified fucosyl-disaccharides were then analyzed for their prebiotic effect in vitro using strains from the Lactobacillus casei/paracasei/rhamnosus group and from Bifidobacterium species. The results revealed that 6 out of 11?L. casei strains and 2 out of 6?L. rhamnosus strains tested were able to ferment Fuc-α1,3-GlcNAc, and L. casei BL87 and L. rhamnosus BL327 strains were also able to ferment Fuc-α1,6-GlcNAc. DNA hybridization experiments suggested that the metabolism of Fuc-α1,3-GlcNAc in those strains relies in an α-L-fucosidase homologous to AlfB. Bifidobacterium breve and Bibidobacterium pseudocatenolatum species also metabolized Fuc-α1,3-GlcNAc. Notably, L-fucose was excreted from all the Lactobacillus and Bifidobacterium strains fermenting fucosyl-disaccharides, except from strains L. rhamnosus BL358 and BL377, indicating that in these latest strains, L-fucose was catabolized. The fucosyl-disaccharides were also tested for their inhibitory potential of pathogen adhesion to human colon adenocarcinoma epithelial (HT29) cell line. Enteropathogenic Escherichia coli (EPEC) strains isolated from infantile gastroenteritis were used, and the results showed that both fucosyl-disaccharides inhibited adhesion to different extents of certain EPEC strains to HT29 cells in tissue culture.  相似文献   

18.
The growth of Bifidobacterium animalis subsp. lactis IPLA 4549 and its derivative with acquired resistance to bile, B. animalis subsp. lactis 4549dOx, was evaluated in batch cultures with glucose or the glucose disaccharide maltose as the main carbon source. The acquisition of bile salt resistance caused a change in growth pattern for both sugars, which mainly resulted in a preferential use of maltose compared to glucose, whereas the mother strain used both carbohydrates in a similar way. High-performance liquid chromatography and gas chromatography-mass spectrometry analyses were performed to determine the amounts of glucose consumption and organic acid and ethanol formation from glucose by buffered resting cells taken at different points during growth. Resting cells of the bile-adapted strain generally consumed less glucose than those of the nonadapted one but showed an enhanced production of ethanol and higher acetic acid-to-lactic acid as well as formic acid-to-lactic acid ratios. These findings suggest a shift in the catabolism of carbohydrates promoted by the acquisition of bile resistance that may cause changes in the redox potential and improvements in the cellular ATP yield.  相似文献   

19.
New structural designs of antibody fragments have considerable biotechnological and therapeutic potential. In this study, we describe the construction and functional expression of a cetuximab-based antibody fragment (scFv-CH3, minibody) that exhibits activity against human colon cancer. Heterologous expression in Escherichia coli (E. coli) was improved by optimizing the host cells, signal peptides, induction conditions, and culture media. The recombinant minibody was expressed successfully in the periplasm of E. coli BL21(DE3) and purified by immobilized metal affinity chromatography using a Ni2+-NTA resin. The purified minibody showed high binding affinity to cell-surface epidermal growth factor receptor (EGFR) and exhibited inhibition of EGFR-mediated signal transduction in the human colon cancer cell line HT29 in a similar way by the cetuximab. The minibody also showed significant level of anti-cancer ability in the HT29 colorectal cancer xenograft model, which was lower than that by the cetuximab.  相似文献   

20.
The dual-functioning antioxidant enzyme peroxiredoxin VI (Prdx6) detoxifies lipid peroxides particularly in biological membranes, and its peroxidase function is activated by glutathione S-transferase Pi (GSTP). The GSTP gene is polymorphic in humans, with the wild-type GSTP1-1 A (Ile105, Ala114) and three variants: GSTP1-1B (Ile105Val, Ala114), GSTP1-1C (Ile105Val, Ala114Val), and GSTP1-1D (Ile105, Ala114Val). The focus of this study was to determine the influence of these polymorphisms on Prdx6 peroxidase function. Using extracellular generation of OH radicals and fluorescence (DPPP dye) detection, we found a fast (∼300 s) onset of lipid peroxidation in membranes of MCF-7 cells transfected with a catalytically inactive Y7F mutant of GSTP1-1 and either GSTP1-1B or GSTP1-1D. However, this effect was not detected in cells expressing either GSTP1-1A or GSTP1-1C. Imaging of DPPP-labeled MCF-7 cells showed fluorescence localized in the plasma membrane, but intensity was substantially diminished in the GSTP1-1 A- and GSTP1-1C-expressing cells. Moreover, in the Y7F mutant of GSTP1-1 A-, GSTP1-1B-, and GST1-1D-expressing cells OH generation resulted (after 36 h) in plasma membrane-permeability-related cell death, whereas GSTP1-1A- and GSTP1-1C-expressing cells had significantly better survival. We used FRET analyses to measure in vitro binding of purified GSTP1-1 allelic variant proteins to purified recombinant Prdx6. The affinities for Prdx6 binding to GSH-loaded GSTP1-1's either mirrored their observed peroxidase activities (using phospholipid hydroperoxide as a substrate), GSTP1-1A>GSTP1-1C (KD=51.0 vs 57.0 nM), or corresponded to inactivation, GSTP1-1B (GSTP1-1D) (KD=101.0 (94.0) nM). In silico modeling of the GSTP1-1–Prdx6 heterodimer revealed that the sites of GSTP1-1 polymorphism (Ile105 and Ala114) are in close proximity to the binding interface. Thus, there is a hierarchy of effectiveness for polymorphic variants of GSTP1-1 to regulate Prdx6 peroxidase function, a feature that may influence human population susceptibilities to oxidant stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号