首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RTKs, the second largest family of membrane receptors, exert control over cell proliferation, differentiation and migration. In recent years, our understanding of RTK structure and activation in health and disease has skyrocketed. Here we describe experimental approaches used to interrogate RTKs, and we review the quantitative biophysical frameworks and structural considerations that shape our understanding of RTK function. We discuss current knowledge about RTK interactions, focusing on the role of different domains in RTK homodimerization, and on the importance and challenges in RTK heterodimerization studies. We also review our understanding of pathogenic RTK mutations, and the underlying physical–chemical causes for the pathologies. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

2.
Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein–coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.  相似文献   

3.
The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.  相似文献   

4.
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.  相似文献   

5.
Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.  相似文献   

6.
7.
The related Axl, Sky and Mer receptor tyrosine kinases (RTKs) are increasingly being implicated in a host of discrete cellular responses including cell survival, proliferation, migration and phagocytosis. Furthermore, their ligands Gas6 and protein S are characteristically dependent on vitamin K for expression of their functions. The Gas6/Axl system is implicated in several types of human cancer as well as inflammatory, autoimmune, vascular and kidney diseases. Each member of the Axl RTK subfamily possesses distinct expression profiles as well as discrete functions. In this article, we review the knowledge so far on the intracellular signalling interactions and pathways concerning each of the Axl RTKs. In this way, we hope to gain a greater understanding of the mechanisms that set each of them apart, and that relay their associated functions.  相似文献   

8.
The transmembrane (TM) domains of receptor tyrosine kinases (RTKs) play an active role in signaling. They contribute to the stability of full-length receptor dimers and to maintaining a signaling-competent dimeric receptor conformation. In an exciting new development, two structures of RTK TM domains have been solved, a break-through achievement in the field. Here we review these structures, and we discuss recent studies of RTK TM domain dimerization energetics, possible synergies between domains, and the effects of pathogenic RTK TM mutations on structure and dimerization.  相似文献   

9.
Signalling by receptor tyrosine kinases (RTKs) coordinates basic cellular processes during development and in adulthood. Whereas aberrant RTK signalling can lead to cancer, reactivation of RTKs is often found following stress or cell damage. This has led to the common belief that RTKs can counteract degenerative processes and so strategies to exploit them for therapy have been extensively explored. An understanding of how RTK stimuli act at cellular levels is needed, however, to evaluate their mechanism of therapeutic action. In this study, we genetically explored the biological and functional significance of enhanced signalling by the Met RTK in neurons, in the context of a neurodegenerative disease. Conditional met-transgenic mice, namely Rosa26LacZ−stop−Met, have been engineered to trigger increased Met signalling in a temporal and tissue-specific regulated manner. Enhancing Met levels in neurons does not affect either motor neuron (MN) development or maintenance. In contrast, increased neuronal Met in amyotrophic lateral sclerosis (ALS) mice prolongs life span, retards MN loss, and ameliorates motor performance, by selectively delaying disease onset. Thus, our studies highlight the properties of RTKs to counteract toxic signals in a disease characterized by dysfunction of multiple cell types by acting in MNs. Moreover, they emphasize the relevance of genetically assessing the effectiveness of agents targeting neurons during ALS evolution.  相似文献   

10.
Much cell‐to‐cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP‐MS) to characterize stable binding partners and RTK–protein complexes, proximity‐dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase‐deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well‐studied RTKs, offers insights into the functions of less well‐studied RTKs, and highlights RTK‐RTK interactions and shared signaling pathways.  相似文献   

11.
12.
13.
Dimerization is a critical requirement for the activation of the intracellular kinase domains of receptor tyrosine kinases (RTKs). The single transmembrane (TM) helices of RTKs contribute to dimerization, but the details are not well understood. Work with TM helices in various model systems has revealed a small number of specific dimerization sequence motifs, and it has been suggested that RTK dimerization is modulated by such motifs. Yet questions remain about the universality of these sequence motifs for RTK dimerization and about how TM domain dimerization in model systems relates to RTK activation in mammalian membranes. To investigate these questions, we designed a 3888-member combinatorial peptide library based on the TM domain of Neu (ErbB2) as a model RTK. The library contains many closely related, Neu-like sequences, including thousands of sequences with known dimerization motifs. We used an SDS-PAGE-based screen to select peptides that dimerize better than the native Neu sequence, and we assayed the activation of chimeric Neu receptors in mammalian cells with TM sequences selected in the screen. Despite the very high abundance of known dimerization motifs in the library, only a very few dimerizing sequences were identified by SDS-PAGE. About half of those sequences activated the Neu kinase significantly more than did the wild-type TM sequence. This work furthers our knowledge about the requirements for membrane protein interactions and the requirements for RTK activation in cells.  相似文献   

14.
The same receptor tyrosine kinase (RTK) can mediate strikingly different biological responses in a fibroblast as opposed to a neuron. We have compared the rapidly induced tyrosine phosphorylations mediated by various RTKs in both NIH3T3 fibroblasts and in the PC12 neuronal precursor cell line and found that each RTK induces a distinct pattern of protein tyrosine phosphorylations in the two cell types. These findings are consistent with a model in which various cell types present a given RTK with different menus of signal transduction components, allowing the same RTK to elicit fundamentally distinct biological responses. Although there are obvious overlaps in the tyrosine phosphorylations induced by different RTKs in the same cell, there are also clear differences. The attempt to dissect these differences revealed that the kinase inhibitors K-252a and staurosporine inhibit RTK autophosphorylation and thus the biological consequences of receptor/ligand interaction. These inhibitors displayed substantially greater specificity for a subset of RTKs (including the neurotrophin receptors) than for other RTKs and acted as remarkably selective blockers of neurotrophin action in both neuronal and nonneuronal cells. A potential therapeutic application for these inhibitors is discussed.  相似文献   

15.
Li E  Hristova K 《Biochemistry》2006,45(20):6241-6251
Receptor tyrosine kinases (RTKs) conduct biochemical signals via lateral dimerization in the plasma membrane, and their transmembrane (TM) domains play an important role in the dimerization process. Here we present two models of RTK-mediated signaling, and we discuss the role of the TM domains within the framework of these two models. We summarize findings of single-amino acid mutations in RTK TM domains that induce unregulated signaling and, as a consequence, pathological phenotypes. We review the current knowledge of pathology induction mechanisms due to these mutations, focusing on the structural and thermodynamic basis of pathogenic dimer stabilization.  相似文献   

16.
In the present review we summarize sequence data obtained from cloning of sponge receptor tyrosine kinases [RTK]. The cDNA sequences were mainly obtained from the marine sponge Geodia cydonium. RTKs (i) with immunoglobulin [Ig]-like domains in the extracellular region, (ii) of the type of insulin-like receptors, as well as (iii) RTKs with one extracellular speract domain, have been identified. The analyses revealed that the RTK genes are constructed in blocks [domains], suggesting a blockwise evolution. The phylogenetic relationships of the sequences obtained revealed that all sponge sequences fall into one branch of the evolutionary tree, while related sequences from higher Metazoa, human, mouse and rat, including also invertebrate sequences, together form a second branch. It is concluded that the RTK molecules have evolved in sponges prior to the "Cambrian Explosion" and have contributed to the rapid appearance of the higher metazoan phyla and that sponges are, as a taxon, also monophyletic. Due to the fact that protein tyrosine kinases in general and RTKs in particular have only been identified in Metazoa, they are, as a group qualified, to be considered as an autapomorphic character of all metazoan phyla.  相似文献   

17.
Defective downregulation of receptor tyrosine kinases in cancer   总被引:7,自引:0,他引:7       下载免费PDF全文
Most growth factors control cellular functions by activating specific receptor tyrosine kinases (RTKs). While overactivation of RTK signalling pathways is strongly associated with carcinogenesis, it is becoming increasingly clear that impaired deactivation of RTKs may also be a mechanism in cancer. A major deactivation pathway, receptor downregulation, involves ligand-induced endocytosis of the RTK and subsequent degradation in lysosomes. A complex molecular machinery that uses the small protein ubiquitin as a key regulator assures proper endocytosis and degradation of RTKs. Here we discuss evidence that implicates deregulation of this machinery in cancer.  相似文献   

18.
The transmembrane (TM) domains of receptor tyrosine kinases (RTKs) play an active role in signaling. They contribute to the stability of full-length receptor dimers and to maintaining a signaling-competent dimeric receptor conformation. In an exciting new development, two structures of RTK TM domains have been solved, a break-through achievement in the field. Here we review these structures, and we discuss recent studies of RTK TM domain dimerization energetics, possible synergies between domains, and the effects of pathogenic RTK TM mutations on structure and dimerization.Key words: transmembrane domain, dimerization thermodynamics, receptor tyrosine kinases, pathogenic mutations, dimer structure  相似文献   

19.
Receptor tyrosine kinases (RTKs) occupy a separate functional niche among membrane receptors, which is determined by the special features of mechanisms of the signal transduction through a cellular membrane. RTKs are involved in the regulation of development and homeostasis of all the tissues of a human organism, playing a central role in cell proliferation, differentiation, and adhesion. A necessary condition of the biochemical signal transduction through a plasmatic membrane is a ligand-dependent or a ligand-independent dimerization (and/or an oligomerization) of RTKs which is accompanied by conformational rearrangements of all the RTK domains, including the α-helical transmembrane segments. In this review, the main aspects of structure-function relationship for RTKs from various receptor subfamilies are briefly discussed. It is shown in the light of the recently obtained biophysical and biochemical data that functioning of RTK receptors is mediated not only by protein–protein interactions, but by the state of the lipid environment as one of the main components of a self-consistent signal transduction system as well. The new principles of intercellular signal transduction through a membrane replenish the molecular mechanisms of the RTK functioning that have been earlier proposed and explain a number of paradoxes which are observed upon activation of wild-type receptors and the receptors with pathogenic transmembrane mutations. Understanding of the complex mechanisms of the signaling processes can facilitate the successful search for new opportunities of influence on the RTK biological functions with potential therapeutic consequences.  相似文献   

20.
The trafficking of receptor tyrosine kinases (RTKs) to distinct subcellular locations is essential for the specificity and fidelity of signal transduction and biological responses. This is particularly important in the PNS and CNS in which RTKs mediate key events in the development and maintenance of neurons and glia through a wide range of neural processes, including survival, proliferation, differentiation, neurite outgrowth, and synaptogenesis. The mechanisms that regulate the targeting of RTKs to their subcellular destinations for appropriate signal transduction, however, are still elusive. In this review, we discuss evidence for the spatial organization of signaling machinery into distinct subcellular compartments, as well as the role for ligand specificity, receptor sorting signals, and lipid raft microdomains in RTK targeting and the resultant cellular responses in neural cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号