首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutants in deoxyadenosine methyltransferase (dam) from many Gram-negative pathogens suggest multiple roles for Dam methylase: directing post-replicative DNA mismatch repair to the correct strand, guiding the temporal control of DNA replication and regulating the expression of multiple genes (including virulence factors) by differential promoter methylation. Dam methylase (HI0209) in strain Rd KW20 was inactivated in Haemophilus influenzae strains Rd KW20, Strain 12 and INT-1; restriction with Dam methylation-sensitive enzymes DpnI and DpnII confirmed the absence of Dam methylation, which was restored by complementation with a single copy of dam ectopically expressed in cis. Despite the lack of increased mutation frequency, the dam mutants had a 2-aminopurine-susceptible phenotype that could be suppressed by secondary mutations in mutS, suggesting a role for Dam in H. influenzae DNA mismatch repair. Invasion of human brain microvascular endothelial cells (HBMECs) and human respiratory epithelial cells (NCI-H292) by the dam mutants was significantly attenuated in all strains, suggesting the absence of a Dam-regulated event necessary for uptake or invasion of host cells. Intracellular replication was inhibited only in the Strain 12 dam mutant, whereas in the infant rat model of infection, the INT-1 dam mutant was less virulent. Dam activity appears to be necessary for both in vitro and in vivo virulence in a strain-dependent fashion and may function as a regulator of gene expression including virulence factors.  相似文献   

3.
In Klebsiella pneumoniae, a chromosomal insertion mutation was constructed in the dam gene, which encodes DNA adenine methylase (Dam), resulting in a mutant unable to methylate specific nucleotides. In some bacteria, the Dam methylase has been shown to play an important role in virulence gene regulation as well as in methyl-directed mismatch repair and the regulation of replication initiation. Disruption of the normal Dam function by either eliminating or greatly increasing expression in several organisms has been shown to cause attenuation of virulence in murine models of infection. In K. pneumoniae, a mutation-eliminating Dam function is shown here to result in only partial attenuation following intranasal and intraperitoneal infection of Balb/C mice.  相似文献   

4.
Near-ultraviolet (NUV) radiation and hydrogen peroxide (H2O2) inactivation studies were performed on Escherichia coli K-12 DNA adenine methylation (dam) mutants and on cells that carry plasmids which overexpress Dam methylase. Lack of methylation resulted in increased sensitivity to NUV and H2O2 (a photoproduct of NUV). In a dam mutant carrying a dam plasmid, the levels of Dam enzyme and resistance to NUV and H2O2 were restored. However, using a multicopy dam+ plasmid strain, increasing the methylase above wildtype levels resulted in an increase in sensitivity of the cells rather than resistance.  相似文献   

5.
Mutants of Salmonella typhimurium lacking DNA adenine methylase were isolated; they include insertion and deletion alleles. The dam locus maps at 75 min between cysG and aroB, similar to the Escherichia coli dam gene. Dam(-) mutants of S. typhimurium resemble those of E. coli in the following phenotypes: (1) increased spontaneous mutations, (2) moderate SOS induction, (3) enhancement of duplication segregation, (4) inviability of dam recA and dam recB mutants, and (5) suppression of the inviability of the dam recA and dam recB combinations by mutations that eliminate mismatch repair. However, differences between S. typhimurium and E. coli dam mutants are also found: (1) S. typhimurium dam mutants do not show increased UV sensitivity, suggesting that methyl-directed mismatch repair does not participate in the repair of UV-induced DNA damage in Salmonella. (2) S. typhimurium dam recJ mutants are viable, suggesting that the Salmonella RecJ function does not participate in the repair of DNA strand breaks formed in the absence of Dam methylation. We also describe a genetic screen for detecting novel genes regulated by Dam methylation and a locus repressed by Dam methylation in the S. typhimurium virulence (or ``cryptic') plasmid.  相似文献   

6.
The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors.  相似文献   

7.
A mutant of Salmonella typhimurium with a reduced response to mutation induction by 9-aminoacridine (9AA) has been isolated. The mutation (dam-2) is located in the DNA adenine methylase gene. The dam-2 mutant strain exhibits a level of sensitivity to 2-aminopurine (2AP) intermediate between that of the dam+ and the DNA adenine methylation-deficit dam-1 strain, and 2AP sensitivity was reversed by introduction of a mutH mutation or of the plasmid pMQ148 (which carries a functional Escherichia coli dam+ gene). However, the dam-2 strain is not grossly defective in DNA adenine methylase activity. Whole cell DNA appears full methylated at -GATC- sites. The levels of 9AA required to induce equivalent levels of frameshift mutagenesis in the dam-2 strain were approximately 2-fold higher than for the dam+ strain. Introduction of pMQ148 dam+ reduced the level of 9AA required for induction of frameshift mutations 4-fold in the dam-2 strain and 2-fold in the dam+ strain. The dam-2 mutation had no effect on the levels of ICR191 required for induction of frameshift mutations, but introduction of pMQ148 reduced the ICR191-induced mutagenesis 2-fold. The dam+/pMQ148, dam-2/pMQ148 and dam-1/pMQ148 strains showed identical dose-response curves for both 9AA and ICR191. These results are consistent with a slightly reduced (dam-2) or increased (pMQ148) rate of methylation at the replication fork. The 2AP sensitivity of the dam-2 strain cannot be simply explained. Furthermore, addition of methionine to the assay medium reverses the 2AP sensitivity of the dam-2 strain, but has no effect on 9AA mutagenesis.  相似文献   

8.
9.
10.
Salmonella enterica serovar Typhimurium that lacks the DNA adenine methylase (Dam) ectopically expresses multiple genes that are preferentially expressed during infection, is attenuated for virulence, and confers heightened immunity in vaccinated hosts. The safety of dam mutant Salmonella vaccines was evaluated by screening within infected mice for isolates that have an increased capacity to cause disease relative to the attenuated parental strain. Since dam mutant strains are sensitive to the DNA base analog 2-aminopurine (2-AP), we screened for 2-AP-resistant (2-AP(r)) isolates in systemic tissues of mice infected with dam mutant Salmonella. Such 2-AP(r) derivatives were isolated following intraperitoneal but not oral administration and were shown to be competent for infectivity via intraperitoneal but not oral infection of na?ve mice. These 2-AP(r) derivatives were deficient in methyl-directed mismatch repair and were resistant to nitric oxide, yet they retained the bile-sensitive phenotype of the parental dam mutant strain. Additionally, introduction of a mutH null mutation into dam mutant cells suppressed the inherent defects in intraperitoneal infectivity and nitric oxide resistance, as well as overexpression of SpvB, an actin cytotoxin required for Salmonella systemic survival. These data suggest that restoration of intraperitoneal virulence of dam mutant strains is associated with deficiencies in methyl-directed mismatch repair that correlate with the production of systemically related virulence functions.  相似文献   

11.
12.
13.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

14.
15.
16.
The Escherichia coli DNA adenine methylase (dam) gene has been introduced into Saccharomyces cerevisiae on a yeast-E. coli shuttle vector. Sau3AI, MboI, and DpnI restriction enzyme digests and Southern hybridization analysis indicated that the dam gene is expressed in yeast cells and methylates GATC sequences. Analysis of digests of total genomic DNA indicated that some GATC sites are not sensitive to methylation. The failure to methylate may reflect an inaccessibility to the methylase due to chromosome structure. The effects of this in vivo methylation on the processes of recombination and mutation in mitotic cells were determined. A small but definite general increase was found in the frequency of mitotic recombination. A similar increase was observed for reversion of some auxotrophic markers; other markers demonstrated a small decrease in mutation frequency. The effects on mutation appear to be locus (or allele) specific. Recombination in meiotic cells was measured and was not detectably altered by the presence of 6-methyladenine in GATC sequences.  相似文献   

17.
Spontaneous mutants of Streptococcus mutans GS-5 defective in sucrose-dependent colonization of smooth surfaces are generated at frequencies above the spontaneous mutation rate. Southern blot analysis of such mutants suggested rearrangement of the genes coding for glucosyltransferase (GTF) activity. Two strain GS-5 homologous tandem genes, gtfB and gtfC, coding for GTF-I and GTF-S activities respectively, were demonstrated to undergo recombination when introduced into recombination-proficient Escherichia coli transformants. However, the two genes were quite stable when transformed on a single DNA fragment into a recA mutant of E. coli. The DNA fragment coding for GTF activity from one S. mutans colonization-defective mutant, SP2, was isolated and shown also to have undergone recombination between the gtfB and gtfC genes, resulting in reduced GTF activity. These results are discussed relative to the in vivo generation of colonization-defective mutants in cultures of S. mutans.  相似文献   

18.
A recombinant plasmid, pMQ3, carrying the dam gene of Escherichia coli K-12, was constructed and transformed into dam+ and dam- strains. Both dam- and dam+ strains containing pMQ3 showed a wild phenotype for all traits, including mutation rate, except for a 10-fold increase in DNA adenine methylase activity.  相似文献   

19.
DNA adenine methylase mutants of Salmonella typhimurium contain reduced amounts of FinP, an antisense RNA encoded by the virulence plasmid pSLT. Lowered FinP levels are detected in both Dam- FinO+ and Dam- FinO- backgrounds, suggesting that Dam methylation regulates FinP production rather than FinP half-life. Reduced amounts of F-encoded FinP RNA are likewise found in Dam- mutants of Escherichia coli. A consequence of FinP RNA scarcity in the absence of DNA adenine methylation is that Dam- mutants of both S. typhimurium and E. coli show elevated levels of F plasmid transfer. Inhibition of F fertility by the S. typhimurium virulence plasmid is also impaired in a Dam- background.  相似文献   

20.
Vibrio cholerae mutants sensitive to 2-aminopurine (2AP) but with DNA adenine methylase activity similar to parental cells have been isolated. The mutant strains were sensitive to ultraviolet light (UV), methyl methane sulphonate (MMS) and 9-aminoacridine. The spontaneous mutation frequency of the mutants were not significantly affected. Attempts to isolate dam V. cholerae cells by screening 2AP sensitive cells have not been successful. All the mutant phenotypes could be suppressed by introducing the plasmid pRB103 carrying the dam gene of Escherichia coli into the mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号