首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, several groups have developed green fluorescent protein (GFP)-based Ca(2+) probes. When applied in cells, however, these probes are difficult to use because of a low signal-to-noise ratio. Here we report the development of a high-affinity Ca(2+) probe composed of a single GFP (named G-CaMP). G-CaMP showed an apparent K(d) for Ca(2+) of 235 nM. Association kinetics of Ca(2+) binding were faster at higher Ca(2+) concentrations, with time constants decreasing from 230 ms at 0.2 microM Ca(2+) to 2.5 ms at 1 microM Ca(2+). Dissociation kinetics (tau approximately 200 ms) are independent of Ca(2+) concentrations. In HEK-293 cells and mouse myotubes expressing G-CaMP, large fluorescent changes were observed in response to application of drugs or electrical stimulations. G-CaMP will be a useful tool for visualizing intracellular Ca2+ in living cells. Mutational analysis, together with previous structural information, suggests the residues that may alter the fluorescence of GFP.  相似文献   

2.
A sugar-aza-crown ether (SAC)-based fluorescent sensor 4 was prepared. It contains a pyrene as the fluorophore and its fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 4 exhibits highly selective recognition toward Cu(2+) and Hg(2+) ions among a series of tested metal ions in methanol solution. The association constants for 4*Cu(2+) and 4*Hg(2+) in methanol solution were calculated to be 7.4×10(1)M(-1) and 4.4×10(3)M(-1), respectively. Chemosensor 4 formed complexes with the Cu(2+) or Hg(2+) ion at a 1:1 ligand-to-metal ratio with a detection limit of 1.3×10(-4)M Cu(2+) and 1.26×10(-5)MHg(2+), respectively.  相似文献   

3.
Spherical atrial myocytes obtained by enzymatic dispersion of hearts from adult guinea-pigs were loaded with the fluorescent Ca(2+)-indicator Indo-1 via patch-clamp pipettes. The dialysing solution additionally contained citrate (60 mM) as low-affinity ('linear') Ca(2+)-chelating compound in order to slow intracellular Ca(2+)-transients. Changes in Indo-1 fluorescence under voltage-clamp due to Ca(2+)-entry and/or release from the SR were calibrated using an in vivo procedure to determine the limiting fluorescence ratios. Sample recordings will be presented to demonstrate that components of a [Ca2+]i-transient due to entry via L-type Ca(2+)-channels and due to Ca(2+)-release from the SR can be directly visualized.  相似文献   

4.
Real-time visualization of calcium (Ca(2+)) dynamics in the whole animal will enable important advances in understanding the complexities of cellular function. The genetically encoded bioluminescent Ca(2+) reporter green fluorescent protein-aequorin (GA) allows noninvasive detection of intracellular Ca(2+) signaling in freely moving mice. However, the emission spectrum of GA is not optimal for detection of activity from deep tissues in the whole animal. To overcome this limitation, two new reporter genes were constructed by fusing the yellow fluorescent protein (Venus) and the monomeric red fluorescent protein (mRFP1) to aequorin. Transfer of aequorin chemiluminescence energy to Venus (VA) is highly efficient and produces a 58 nm red shift in the peak emission spectrum of aequorin. This substantially improves photon transmission through tissue, such as the skin and thoracic cage. Although the Ca(2+)-induced bioluminescence spectrum of mRFP1-aequorin (RA) is similar to that of aequorin, there is also a small peak above 600 nm corresponding to the peak emission of mRFP1. Small amounts of energy transfer between aequorin and mRFP1 yield an emission spectrum with the highest percentage of total light above 600 nm compared with GA and VA. Accordingly, RA is also detected with higher sensitivity from brain areas. VA and RA will therefore improve optical access to Ca(2+) signaling events in deeper tissues, such as the heart and brain, and offer insight for engineering new hybrid molecules.  相似文献   

5.
This study documents the identity of an intriguing transduction mechanism of the [Ca(2+)](i) signals by the photoreceptor ROS-GC1. Despite their distal residences and operational modes in phototransduction, the two GCAPs transmit and activate ROS-GC1 through a common Ca(2+) transmitter switch (Ca(2+)TS). A combination of immunoprecipitation, fluorescent spectroscopy, mutational analyses and reconstitution studies has been used to demonstrate that the structure of this switch is (657)WTAPELL(663). The two Ca(2+) signaling GCAP pathways converge in Ca(2+)TS, get transduced, activate ROS-GC1, generate the LIGHT signal second messenger cyclic GMP and yet functionally perform divergent operations of the phototransduction machinery. The findings define a new Ca(2+)-modulated photoreceptor ROS-GC transduction model; it is depicted and discussed for its application to processing the different shades of LIGHT.  相似文献   

6.
Cod parvalbumin, a calcium-binding protein, possesses a specific Zn2+ (or Cu2+) binding site per molecule. This work employed fluorescence energy transfer techniques to measure the distance between the Zn2+ (Cu2+) site and the stronger Ca(2+)-binding site in parvalbumin. Specifically, the distance between Tb3+ bound at the Ca2+ site and Co2+ bound to the Zn2+ (Cu2+) binding site was 10.3 +/- 0.9 A. Lastly, the effects of Cu2+ on the physico-chemical properties of parvalbumin were studied by measuring the accessibility of protein thiol groups to 5,5'-dithio bis(2-nitrobenzoic acid) and by its affinity for the fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulfonic acid] dipotassium salt. The thiol group accessibility decreased and the affinity to the fluorescent probe increased upon complexation of Cu2+ to the protein. It appears that the binding of Cu2+ converts parvalbumin to an apo-like state.  相似文献   

7.
In contrast to previous studies, a new fluorescent method was used to accurately determine the Ca(2+) concentration in test solutions used to activate skinned rat cardiac cells. This method used the calcium green-2 fluorescent indicator, which is shown to change its fluorescence over the Ca(2+) range responsible for Ca(2+) activation of force and ATPase. The dissociation constant (K(d)) of calcium green-2 for Ca(2+) was determined for three different Mg(2+) concentrations in solutions similar to those used in the experiment. Increasing Mg(2+) concentration from 1.0 to 8.0 mM had no significant effect on the Ca(2+) sensitivity of either force or actomyosin ATPase activity, in contrast to previous reported studies on force. The ATPase activity was activated at lower Ca(2+) concentration than the force. The ratio (ATPase/force) is proportional to the dissociation rate of force-generating myosin cross bridges and decreased during Ca(2+) activation. These findings are consistent with the hypothesis that cardiac muscle contraction is activated by a single Ca(2+)-specific binding site on troponin C.  相似文献   

8.
Cellular calcium imaging: so, what's new?   总被引:2,自引:0,他引:2  
The ability to uncover the fine details of intracellular Ca(2+) signals has improved remarkably in recent years, largely as a result of developments in methods for reporting Ca(2+), coupled with great improvements in measurement instrumentation. The cell biologist wishing to image intracellular Ca(2+) has a range of options to consider. These include the use of photoproteins, commercially available fluorescent indicators or the new generation of fluorescent protein Ca(2+) probes. Molecular biology and biophysics are now joining forces to bring major advances in the art of deciphering the complexity of spatiotemporal Ca(2+) signals.  相似文献   

9.
The presence of the store-operated Ca(2+) entry channel Orai1 and its function in signal transduction during fertilization have been investigated in mammalian oocytes using the pig as a model. RT-PCR cloning and sequence analysis revealed that Orai1 is expressed in the oocytes with a coding sequence of 921bp. After indirect immunocytochemistry or the overexpression of EGFP-tagged Orai1, the fluorescent signal was present primarily in the cell cortex consistent with plasma membrane localization of the protein. Western blot and real-time PCR results showed that Orai1 expression decreases during oocyte maturation; this is associated with the oocytes gaining the ability to generate a large Ca(2+) influx after store depletion. Downregulation of Orai1 expression by siRNA microinjection blocked Ca(2+) influx after store depletion and subsequent Ca(2+) add-back; the Ca(2+) oscillations induced by the fertilizing sperm were also inhibited in oocytes with downregulated Orai1 levels. At the same time, overexpression of Orai1 in the oocytes also modified store-operated Ca(2+) entry and had an inhibitory effect on the fertilization Ca(2+) signal. The abnormal Ca(2+) signaling due to Orai1 downregulation had a strong negative impact on subsequent embryo development. Co-overexpression of Orai1 and STIM1 on the other hand, led to a dramatic increase in Ca(2+) entry after store depletion. The findings indicate that Orai1 is a plasma membrane-resident Ca(2+) channel that is responsible for mediating Ca(2+) entry after the mobilization of intracellular Ca(2+) in oocytes. Orai1 and a functional store-operated Ca(2+) entry pathway are required to maintain the Ca(2+) oscillations at fertilization and to support proper embryo development.  相似文献   

10.
The yeast Saccharomyces cerevisiae expressing a cDNA library prepared from Stylosanthes hamata was screened for enhanced Mn(2+) tolerance. From this screen, we identified four related cDNAs that encode membrane-bound proteins of the cation diffusion facilitator (CDF) family. One of these cDNAs (ShMTP1) was investigated in detail and found to confer Mn(2+) tolerance to yeast by internal sequestration rather than by efflux of Mn(2+). Expression of ShMTP1 in a range of yeast mutants suggested that it functions as a proton:Mn(2+) antiporter on the membrane of an internal organelle. Similarly, when expressed in Arabidopsis, ShMTP1 conferred Mn(2+) tolerance through internal sequestration. The ShMTP1 protein fused to green fluorescent protein was localized to the tonoplast of Arabidopsis cells but appeared to localize to the endoplasmic reticulum of yeast. We suggest that the ShMTP1 proteins are members of the CDF family involved in conferring Mn(2+) tolerance and that at least one of these proteins (ShMTP1) confers tolerance by sequestering Mn(2+) into internal organelles.  相似文献   

11.
In pancreatic beta-cells Zn(2+) is crucial for insulin biosynthesis and exocytosis. Despite this, little is known about mechanisms of Zn(2+) transport into beta-cells or the regulation and compartmentalization of Zn(2+) within this cell type. Evidence suggests that Zn(2+) in part enters neurons and myocytes through specific voltage-gated calcium channels (VGCC). Using a Zn(2+)-selective fluorescent dye with high affinity and quantum yield, FluoZin-3 AM and the plasma membrane potential dye DiBAC(4)(3) we applied fluorescent microscopy techniques for analysis of Zn(2+)-accumulating pathways in mouse islets, dispersed islet cells, and beta-cell lines (MIN6 and beta-TC6f7 cells). Because the stimulation of insulin secretion is associated with cell depolarization, Zn(2+) (5-10 mum) uptake was analyzed under basal (1 mm glucose) and stimulatory (10-20 mm glucose, tolbutamide, tetraethylammonium, and high K(+)) conditions. Under both basal and depolarized states, beta-cells were capable of Zn(2+) uptake, and switching from basal to depolarizing conditions resulted in a marked increase in the rate of Zn(2+) accumulation. Importantly, L-type VGCC (L-VGCC) blockers (verapamil, nitrendipine, and nifedipine) as well as nonspecific inhibitors of Ca(2+) channels, Gd(3+) and La(3+), inhibited Zn(2+) uptake in beta-cells under stimulatory conditions with little or no change in Zn(2+) accumulation under low glucose conditions. To determine the mechanism of VGCC-independent Zn(2+) uptake the expression of a number of ZIP family Zn(2+) transporter mRNAs in islets and beta-cells was investigated. In conclusion, we demonstrate for the first time that, in part, Zn(2+) transport into beta-cells takes place through the L-VGCC. Our investigation demonstrates direct Zn(2+) accumulation in insulin-secreting cells by two pathways and suggests that the rate of Zn(2+) transport across the plasma membrane is dependent upon the metabolic status of the cell.  相似文献   

12.
A tricationic phenylene-ethynylene (N(3+)) fluorophore is investigated as a fluorescent transducer in homogeneous aptasensing system for potassium ion (K(+)) assay in aqueous media. The enhancement of the fluorescent signal of N(3+) by three K(+) aptamers consisting of 12, 15, and 21 nucleotides are observed and used for the determination of N(3+)-aptamer binding affinities. The binding affinities increase with the length of the aptameric oligonucleotides and are proven to be important to the sensitivity and selectivity of the aptasensors. The enhanced fluorescent signal of each N(3+)-aptamer solution is selectively quenched by K(+) due to the ability of K(+) in stabilizing the G-quadruplex structure of the aptamer. Among three aptamers, the 15-base aptamer provides optimal sensitivity and selectivity over other ions such as Li(+), Na(+), NH(4)(+), Mg(2+), Ca(2+) and Sr(2+). The sensing system shows the detection limit of 1 μM of K(+) in clean buffered solution and 30 μM of K(+) in the solution containing 4800-fold excess of Na(+), with wide linear dynamic ranges of micro- to millimolar concentration. This label-free fluorescence aptasensor is conveniently and effectively applicable for analysis of K(+) in urine samples.  相似文献   

13.
We have devised a general synthesis of Mg(2+) indicators which is based on the aminophenol triacetic acid (APTRA) structure. The key step is a palladium-catalyzed coupling reaction of a precursor of the APTRA ligand with a fluorescent group. This strategy resulted in new ratioable fluorescent APTRA indicators and the finding that the fluorescence response of these indicators is different for Mg(2+) and Ca(2+) in some cases. We believe that this represents a generally useful approach for combining fluorophore and chelator functionalities.  相似文献   

14.
Two new, visible-excited and red-emitting fluorescent Ca(2+) indicators were synthesized and the spectral profiles of their free and Ca(2+) bound forms were studied. The fluorescent properties of these probes are due to the extended conjugation of the chromeno[3',2':3,4]pyrido[1,2a][1,3]benzimidazole chromophore incorporated in their BAPTA-type, Ca(2+) chelating structure. The compounds, namely ICPBC and its N-dodecyl analog C12-ICPBC exhibit Ca(2+) dissociation constants of 7.7 and 18.0 microM, respectively. The fluorescence spectra of the probes showed a clear shift in excitation wavelength maxima upon Ca(2+) binding along with a large Stokes shift and changes in fluorescence intensity, indicating their potential use as Ca(2+) indicators. The ability of ICPBC to trace high calcium spikes was tested in the human HepG2 cell line with positive results.  相似文献   

15.
Ca(2+) elevations in Chinese hamster ovary cells stably expressing OX(1) receptors were measured using fluorescent Ca(2+) indicators fura-2 and fluo-3. Stimulation with orexin-A led to pronounced Ca(2+) elevations with an EC(50) around 1 nm. When the extracellular [Ca(2+)] was reduced to a submicromolar concentration, the EC(50) was increased 100-fold. Similarly, the inositol 1,4,5-trisphosphate production in the presence of 1 mm external Ca(2+) was about 2 orders of magnitude more sensitive to orexin-A stimulation than in low extracellular Ca(2+). The shift in the potency was not caused by depletion of intracellular Ca(2+) but by a requirement of extracellular Ca(2+) for production of inositol 1,4,5-trisphosphate. Fura-2 experiments with the "Mn(2+)-quench technique" indicated a direct activation of a cation influx pathway by OX(1) receptor independent of Ca(2+) release or pool depletion. Furthermore, depolarization of the cells to +60 mV, which almost nullifies the driving force for Ca(2+) entry, abolished the Ca(2+) response to low concentrations of orexin-A. The results thus suggest that OX(1) receptor activation leads to two responses, (i) a Ca(2+) influx and (ii) a direct stimulation of phospholipase C, and that these two responses converge at the level of phospholipase C where the former markedly enhances the potency of the latter.  相似文献   

16.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

17.
Release of H(2)O(2) in response to Ca(2+) loads (1-100 microM) was investigated using Amplex red fluorescent assay in isolated guinea-pig brain mitochondria respiring on glutamate plus malate or succinate. In mitochondria challenged with Ca(2+) (10 microM), in the absence of adenine nucleotides and inhibitors of the respiratory chain, the rate of H(2)O(2) release, taken as an indication of H(2)O(2) production, was decreased by 21.8+/-1.6% in the presence of NADH-linked substrates and by 86.5+/-1.8% with succinate. Parallel with this, a Ca(2+)-induced loss in NAD(P)H fluorescence, sustained depolarization, decrease in fluorescent light scattering signal and in calcein fluorescence were detected indicating an increased permeability and swelling of mitochondria, which were prevented by ADP (2 mM). In the presence of ADP H(2)O(2) release from mitochondria was decreased, but Ca(2+) no longer influenced the generation of H(2)O(2). We suggest that the decreased H(2)O(2) generation induced by Ca(2+) is related to depolarization and NAD(P)H loss resulting from a non-specific permeability increase of the mitochondrial inner membrane.  相似文献   

18.
Protease-activated receptor-2 (PAR-2) is activated when trypsin cleaves its NH(2) terminus to expose a tethered ligand. We previously demonstrated that PAR-2 activates ion channels in pancreatic duct epithelial cells (PDEC). Using real-time optical fluorescent probes, cyan fluorescence protein-Epac1-yellow fluorescence protein for cAMP, PH(PLC-delta1)-enhanced green fluorescent protein for phosphatidylinositol 4,5-bisphosphate, and protein kinase Cgamma (PKCgamma)-C1-yellow fluorescence protein for diacylglycerol, we now define the signaling pathways mediating PAR-2 effect in dog PDEC. Although PAR-2 activation does not stimulate a cAMP increase, it induces phospholipase C to hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol. Intracellular Ca(2+) mobilization from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores and a subsequent Ca(2+) influx through store-operated Ca(2+) channels cause a biphasic increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), measured with Indo-1 dye. Single-cell amperometry demonstrated that this increase in [Ca(2+)](i) in turn causes a biphasic increase in exocytosis. A protein kinase assay revealed that trypsin also activates PKC isozymes to stimulate additional exocytosis. Paralleling the increased exocytosis, mucin secretion from PDEC was also induced by trypsin or the PAR-2 activating peptide. Consistent with the serosal localization of PAR-2, 1 microm luminal trypsin did not induce exocytosis in polarized PDEC monolayers; on the other hand, 10 microm trypsin at 37 degrees C damaged the epithelial barrier sufficiently so that it could reach and activate the serosal PAR-2 to stimulate exocytosis. Thus, in PDEC, PAR-2 activation increases [Ca(2+)](i) and activates PKC to stimulate exocytosis and mucin secretion. These functions may mediate the reported protective role of PAR-2 in different models of pancreatitis.  相似文献   

19.
A novel ratiometric fluorescent peptidyl chemosensor (Dansyl-Cys-Pro-Gly-Cys-Trp-NH(2), D-P5) for metal ions detection has been synthesized via Fmoc solid-phase peptide synthesis. The chemosensor exhibited a high selectivity for Cd(2+) over other metal ions including competitive transition and Group I and II metal ions in neutral pH. The fluorescence emission intensity of D-P5 was significantly enhanced in the presence of Cd(2+) by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The binding stoichiometry, detection limit, binding affinity, reversibility and pH sensitivity of the sensor for Cd(2+) were investigated.  相似文献   

20.
Smooth muscle cells (SMCs) contain numerous calcium release domains, grouped into regions discharging as a single unit. Laser scanning confocal microscopy, voltage clamp and immunocytochemistry of single SMCs from small mesenteric arteries of guinea-pig were used to study the localisation, function and macromolecular composition of such calcium discharge regions (CDRs). Use of the Ca(2+)-sensitive fluorescent dye fluo-3 or fluo-4 with BODIPY TR-X ryanodine (BTR), a fluorescent derivative of ryanodine, showed spontaneous Ca(2+) sparks originating from regions stained by BTR, located immediately under the plasma membrane, in the arch formed by the sarcoplasmic reticulum surrounding the nucleus. Membrane depolarisation or application of noradrenaline or alpha,beta-methylene ATP, a P2X purinoceptor agonist, elicited Ca(2+) sparks from the same, spontaneous Ca(2+) spark-discharging region. The most active (primary) CDR accounted for nearly 60% of spontaneous transient outward currents at -40 mV and these were of significantly higher amplitude than the ones discharged by secondary CDRs. Immunocytochemical staining for type 1 IP(3) receptors, BK(Ca) channels, P2X(1) purinoceptors or alpha(1) adrenoceptors revealed their juxtaposition with BTR staining at the location typical of the primary CDR. These data suggest the existence of a primary calcium discharge region in SMCs; its position can be predicted from the cell's structure, it acts as a key region for the regulation of membrane potential via Ca(2+) sparks and is a potential link between the external, neurohumoral and the cell's internal, calcium signalling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号