首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiosis and other nuclear changes in conjugation of Blepharisma japonicum regularly occur when cells of complementary mating types I and II unite (heterotypic union). But no nuclear changes occur if unions are induced between cells of the same mating type (homotypic union). Similarly, chains of homotypically united cells, induced by treating type II cells of a doublet strain (mutant with two attachment points) with gamone of mating type I, do not undergo nuclear changes. However, if a type I cell unites at one end of such a chain, the nuclear changes of conjugation occur not only in the doublet to which the type I cell unites but also in other doublets in the same chain. We examined the mode of propagation of nuclear activation by surgically separating all cells in the chain and observing the subsequent occurrence of nuclear changes in these isolated cells. The nuclear activation began at the site of heterotypic union and propagated from cell-to-cell without skipping. In chains of a given length, the propagation slowed down as it proceeded in the chain. If compared at the corresponding site of the chain, the propagation was slower in longer chains. We conclude that meiosis and other nuclear changes in conjugation are initiated by a substance originating at the site of heterotypic union and transferable to other cells through the united regions of the cells.  相似文献   

2.
Preconjugant interactions between complementary mating-type cells in ciliates occur before sexual reproduction. The interactions include retardation of swimming behaviour, courtship dancing, chemoattraction, nuclear activation, cell division, or cell agglutination, depending on ciliate species. In Blepharisma japonicum, chemoattraction of mating-type I by mating-type II has been reported previously. It has been shown that chemoattraction here is caused by a conjugation-inducing substance called gamone 2 secreted by mating-type II cells. In this study, we show that mating-type II cells accumulate near the site where gamone 1 secreted by mating-type I cells is present at a high concentration. We also show that the behaviour of individual cells changes when exposed to the complementary mating-type gamone; cells begin to rotate and swim slowly, thus shortening their minimum path length (final displacement of a cell from its origin). These results suggest that gamones 1 and 2 induce behavioural changes in type II and I cells, respectively, and that gamone-stimulated cells may accumulate at the site with the highest activity of the complementary gamone, after repetition of swimming changes in the gradient of gamone concentration. This reciprocal induction of the changes in behaviour may increase the probability of sexual encounters for conjugation.  相似文献   

3.
The Tetrahymena nonreversal (TNR) mutants of Tetrahymena thermophila are behavioral mutants with nonexcitable membranes. When cells of the tnrB mutant were mated with wild type, a phenotypic change occurred about 1 h after pair formation. The pairs began to lose their heterotypic character in stimulation solution containing high potassium and, within 1 1/2 h, they were not distinguishable from the wild-type homotypic pairs. On the contrary, although pairs of the tnrA and wild type also lost their heterotypic character about 1 1/2 h after pair formation, they never showed a full response as wild-type homotypic pairs. When tnrA was mated with tnrB, more than 50% of pairs expressed a heterotypic pair character 2 h after pair formation, consistent with the tnrB defect having been rescued but not the tnrA defect. Thus, conjugation rescue of the mutant phenotype is locus dependent and probably reflects the nature of the gene products controlling voltage-dependent Ca2+ channels.  相似文献   

4.
The role of protein synthesis in the cell union was investigated in conjugation of Blepharisma intermedium. In order to avoid possible complications due to the occurrence of other processes in conjugation, the homotypic cell union, in which conjugation is arrested at the stage of cell union without further changes, was used. Such unions were induced by treating cells of one mating type with the gamone of the other mating type for about 2 h. The induction of cell union was regularly accompanied by increased protein synthesis, which started 5 min after the beginning of the gamone treatment and continued for about 2 h. When protein synthesis was inhibited by cycloheximide, cell union was also inhibited. The extent of the two inhibitions were closely correlated. We concluded that gamone induces proteins and that protein synthesis is essential for cell union. Proteins synthesized in gamone-treated and non-treated cells were also separated and compared. Consideration of these results leads to a hypothesis that most of the gamone-induced proteins are membrane proteins normally synthesized, though in lesser amount, in non-conjugating cells and that cells gain the capacity to unite when these proteins are accumulated at a restricted area on the cell surface by another gamone-controlled mechanism.  相似文献   

5.
The Tetrahymena nonreversal (TNR) mutants of Tetrahymena thermophila are behavioral mutants with nonexcitable membranes. When cells of the tnrB mutant were mated with wild type, a phenotypic change occurred about l h after pair formation. The pairs began to lose their heterotypic character in stimulation solution containing high potassium and, within 1 1/2h, they were not distinguishable from the wild-type homotypic pairs. On the contrary, although pairs of the tnrA and wild type also lost their heterotypic character about 1 1/2 h after pair formation, they never showed a full response as wild-type homotypic pairs. When tnrA was mated with tnrB more than 50% of pairs expressed a heterotypic pair character 2 h after pair formation, consistent with the tnrB defect having been rescued but not the tnrA defect. Thus, conjugation rescue of the mutant phenotype is locus dependent and probably reflects the nature of the gene products controlling voltage-dependent Ca2+ channels. © 1992 Wiley-Liss, Inc.  相似文献   

6.
In conjugation of Blepharismajaponicum, cell contact between complementary mating types induces meiosis and other nuclear changes. How long the cells must be in contact in order to be induced to undergo these nuclear changes (activated) can be ascertained by surgically separating the united cells at different times after the onset of cell union and then examining the occurrence of the nuclear changes. Applying this technique to cycloheximide-treated cells, we investigated the role of protein synthesis in the activation. Cycloheximide was used at the concentration which was found to inhibit most incorporation of amino acid into protein in this ciliate. Newly formed conjugant pairs were incubated with and without cycloheximide, washed free of the inhibitor and surgically separated. Although untreated controls were activated in 1.8 h after cell-cell contact, no activation was observed in cycloheximide-treated cells after 5 h of contact. Removal of cycloheximide from the paired cells resulted in an activation delayed by the interval of exposure time to the inhibitor. If the pairs were first incubated in normal medium and then exposed to cycloheximide, operated, activated cells appeared and increased very slowly (activation rate, about 110 of the control). Protein synthesis is therefore required for the initiation of meiosis and other nuclear changes. We propose that heterotypic cell union induces and maintains the synthesis of a protein, whose accumulation to a certain threshold is required for activation.  相似文献   

7.
Homomeric gap junction channels are composed solely of oneconnexin type, whereas heterotypic forms contain two homomeric hemichannels but the six identical connexins of each are different fromeach other. A heteromeric gap junction channel is one that containsdifferent connexins within either or both hemichannels. The existenceof heteromeric forms has been suggested, and many cell types are knownto coexpress connexins. To determine if coexpressed connexins wouldform heteromers, we cotransfected rat connexin43 (rCx43) and humanconnexin37 (hCx37) into a cell line normally devoid of any connexinexpression and used dual whole cell patch clamp to compare the observedgap junction channel activity with that seen in cells transfected onlywith rCx43 or hCx37. We also cocultured cells transfected with hCx37 orrCx43, in which one population was tagged with a fluorescent marker tomonitor heterotypic channel activity. The cotransfected cells possessedchannel types unlike the homotypic forms of rCx43 or hCx37 or theheterotypic forms. In addition, the noninstantaneous transjunctionalconductance-transjunctional voltage(Gj/Vj)relationship for cotransfected cell pairs showed a large range ofvariability that was unlike that of the homotypic or heterotypic form.The heterotypic cell pairs displayed asymmetric voltage dependence. Theresults from the heteromeric cell pairs are inconsistent with summedbehavior of two independent homotypic populations or mixed populationsof homotypic and heterotypic channels types. TheGj/Vjdata imply that the connexin-to-connexin interactions are significantlyaltered in cotransfected cell pairs relative to the homotypic andheterotypic forms. Heteromeric channels are a population of channelswhose characteristics could well impact differently from theirhomotypic counterparts with regard to multicellular coordinatedresponses.

  相似文献   

8.
Well-controlled studies of the structural and functional interactions between cardiomyocytes and other cells are essential for understanding heart pathophysiology and for the further development of safe and efficient cell therapies. We established a novel in vitro assay composed of a large number of individual micropatterned cell pairs with reproducible shape, size, and region of cell-cell contact. This assay was applied to quantify and compare the frequency of expression and distribution of electrical (connexin43) and mechanical (N-cadherin) coupling proteins in 5,000 cell pairs made of cardiomyocytes (CMs), cardiac fibroblasts (CFs), skeletal myoblasts (SKMs), and mesenchymal stem cells (MSCs). We found that for all cell pair types, side-side contacts between two cells formed 4.5-14.3 times more often than end-end contacts. Both connexin43 and N-cadherin were expressed in all homotypic CM pairs but in only 13.4-91.6% of pairs containing noncardiomyocytes, where expression was either junctional (at the site of cell-cell contact) or diffuse (inside the cytoplasm). CM expression was exclusively junctional in homotypic pairs but predominantly diffuse in heterotypic pairs. Noncardiomyocyte homotypic pairs exhibited diffuse expression 1.7-8.7 times more often than junctional expression, which was increased 2.6-4.4 times in heterotypic pairs. Junctional connexin43 and N-cadherin expression, respectively, were found in 38.6 +/- 7.3 and 39.6 +/- 6.2% of CM-MSC pairs, 21.9 +/- 5.0 and 13.6 +/- 1.9% of CM-SKM pairs, and in only 3.8-9.6% of CM-CF pairs. Measured frequencies of protein expression and distribution were stable for at least 4 days. Described studies in micropatterned cell pairs shed new light on cellular interactions relevant for cardiac function and cell therapies.  相似文献   

9.
10.
《FEBS letters》1985,191(2):176-180
A polypeptide, termed gamone 1, was isolated and purified to homogeneity from culture filtrates of mating type VII of the freshwater ciliate Euplotes octocarinatus. The gamone induces intraclonal conjugation in cells of certain other mating types. The isolation and purification of the gamone was carried out by a combination of two chromatographic steps. The purified gamone was found to be still effective in a concentration of approx. 10−15M.  相似文献   

11.
12.
Q Yao  X Hu    R W Compans 《Journal of virology》1997,71(1):650-656
We previously observed that cell fusion caused by human parainfluenza virus type 2 or type 3 requires the expression of both the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins from the same virus type, indicating that a type-specific interaction between F and HN is needed for the induction of cell fusion. In the present study we have further investigated the fusion properties of F and HN proteins of parainfluenza virus type 1 (PI1), type 2 (PI2), and type 3 (PI3), Sendai virus (SN), and simian virus 5 (SV5) by expression of their glycoprotein genes in HeLa T4 cells using the vaccinia virus-T7 transient expression system. Consistent with previous results, cell fusion was observed in cells transfected with homotypic F/HN proteins; with one exception, coexpression of any combination of F and HN proteins from different viruses did not result in cell fusion. The only exception was found with the closely related PI1 HN and SN HN glycoproteins, either of which could interact with SN F to induce cell fusion upon coexpression as previously reported. By specific labeling and coprecipitation of proteins expressed on the cell surface, we observed that anti-PI2 HN antiserum coprecipitated PI2 F when the homotypic PI2 F and PI2 HN were coexpressed, but not the F proteins of other paramyxoviruses when heterotypic F genes were coexpressed with PI2 HN, suggesting that the homotypic F and HN proteins are physically associated with each other on cell surfaces. Furthermore, we observed that PI3 F was found to cocap with PI3 HN but not with PI2 HN, also indicating a specific association between the homotypic proteins. These results indicate that the homotypic F and HN glycoproteins are physically associated with each other on the cell surface and suggest that such association is crucial to cell fusion induced by paramyxoviruses.  相似文献   

13.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

14.
PHA, Con-A, or anti-tubulin antibodies inhibit homotypic pair formation, in B. intermedium mating type-I cells in the presence of suboptimal concentrations of gamone II. The inhibition is dependent on the dose of gamone added; the structural conformation and the relative concentration of the inhibitor; and the time of addition of the inhibitor. The block can be selectively prevented by competitive inhibitors of each ligand. The receptors for the inhibitors are distinctive and there is no cross-reaction between the ligands. It is concluded that ligand binding and subsequent receptor-ligand aggregation must induce a change within the cell-surface membrane, which distorts the distribution and/or affects an optimal conformational aspect of a specific membrane-receptor system for the gamone, a prerequisite for cell pair formation.  相似文献   

15.
Ciliates represent a morphologically and genetically distinct group of single-celled eukaryotes that segregate germline and somatic functions into two types of nuclei and exhibit complex cytogenetic events during the sexual process of conjugation, which is under the control of the so-called “mating type systems”. Studying conjugation in ciliates may provide insight into our understanding of the origins and evolution of sex and fertilization. In the present work, we studied in detail the sexual process of conjugation using the model species Euplotes vannus, and compared these nuclear events with those occurring in other ciliates. Our results indicate that in E. vannus: 1) conjugation requires about 75 hours to complete: the longest step is the development of the new macronucleus (ca. 64h), followed by the nuclear division of meiosis I (5h); the mitotic divisions usually take only 2h; 2) there are three prezygotic divisions (mitosis and meiosis I and II), and two of the eight resulting nuclei become pronuclei; 3) after the exchange and fusion of the pronuclei, two postzygotic divisions occur; two of the four products differentiate into the new micronucleus and macronucleus, respectively, and the parental macronucleus degenerates completely; 4) comparison of the nuclear events during conjugation in different ciliates reveals that there are generally three prezygotic divisions while the number of postzygotic divisions is highly variable. These results can serve as reference to investigate the mating type system operating in this species and to analyze genes involved in the different steps of the sexual process.  相似文献   

16.
Distinct epithelial MDCK cell strains displaying extremes in transepithelial electrical resistance (paracellular permeability) have been established in co-culture and the subsequent cellular behaviour and formation of junctional complexes investigated. After high-density seeding, MDCK strain I and II cells in co-culture are initially randomly distributed but subsequently sort themselves out in a time-dependent manner to form separate homotypic aggregates. The final pattern of cell arrangement of homotypic aggregates depends on the relative seeding proportion of each cell type. Immunostaining of established marker proteins for junctional complexes has revealed that MDCK I and II cells differ in the degree of expression of the zonula-adherens-associated protein, E-cadherin, their cytoskeletal architecture and the junctional distribution of a desmosomal protein, and by showing subtle differences in tight junction staining for the zona-occludens-associated proteins, ZO-1 and occludin. The distinct pattern of junctional protein expression is maintained when the two MDCK strains are co-cultured; however, morphologically atypical intercellular junctions between heterotypic cells at the boundary of homotypic cell aggregates have been observed. It has been suggested that cell sorting, a phenomenon yet to be completely understood, is involved in important morphogenetic processes. We propose that co-culture of strains of the well-characterised MDCK cell line may be a novel but well-defined cell system for studying epithelial cell rearrangement and sorting in intact epithelial sheets.  相似文献   

17.
18.
Protein-protein interactions in the synaptonemal complex.   总被引:5,自引:1,他引:4       下载免费PDF全文
In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II.  相似文献   

19.
Rho-associated protein kinase (ROCK), a molecular switch, modulates cellular functions in many cancers, such as hepatocellular, breast, colon cancers, etc. However, little is known the effect of ROCK on cell adhesion and mobility in esophageal squamous cell cancer (ESCC), one of the most diagnosed cancers in China. In this study, Y-27632 was used to specifically block ROCK activity in ESCC cells. Adhesion of ESCC cells was detected by homotypic and heterotypic adhesion assay together with examination of E-cadherin expression. Motility of ESCC cells changes were examined by detection of phosphorylated cofilin and observed under confocal microscopy, respectively. We found that Y-27632 increased both heterotypic and homotypic adhesion, and the expression of E-cadherin; decreased phosphorylated cofilin resulting in actin rearrangement in ESCC cells. All these findings indicate that ROCK signaling pathway plays an important role in cell adhesion and mobility, suggesting that it may be used as a potential target for therapy of ESCC.  相似文献   

20.
Mutations in GJB2 and GJB6, the genes that encode the human gap junction proteins connexin26 (Cx26) and connexin30 (Cx30), respectively, cause hearing loss. Cx26 and Cx30 are both expressed in the cochlea, leading to the potential formation of heteromeric hemichannels and heterotypic gap junction channels. To investigate their interactions, we expressed human Cx26 and Cx30 individually or together in HeLa cells. When they were expressed together, Cx26 and Cx30 appeared to interact directly (by their colocalization in gap junction plaques, by coimmunoprecipitation, and by fluorescence resonance energy transfer). Scrape-loading cells that express either Cx26 or Cx30 demonstrated that Cx26 homotypic channels robustly transferred both cationic and anionic tracers, whereas Cx30 homotypic channels transferred cationic but not anionic tracers. Cells expressing both Cx26 and Cx30 also transferred both cationic and anionic tracers by scrape loading, and the rate of calcein (an anionic tracer) transfer was intermediate between their homotypic counterparts by fluorescence recovery after photobleaching. Fluorescence recovery after photobleaching also showed that Cx26 and Cx30 form functional heterotypic channels, allowing the transfer of calcein, which did not pass the homotypic Cx30 channels. Electrophysiological recordings of cell pairs expressing different combinations of Cx26 and/or Cx30 demonstrated unique gating properties of cell pairs expressing both Cx26 and Cx30. These results indicate that Cx26 and Cx30 form functional heteromeric and heterotypic channels, whose biophysical properties and permeabilities are different from their homotypic counterparts. gap junctions; hearing; fluorescence resonance energy transfer; fluorescence recovery after photobleaching; immunoprecipitation; dye transfer; electrophysiology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号