首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The resurrection plant (Craterostigma plantagineum) is desiccation tolerant. However, callus derived from this plant, when propagated in vitro, requires exogenously applied abscisic acid (ABA) in order to survive desiccation. Treatment of callus tissue with ABA induces most of the genes that are induced by dehydration in the whole plant. This property has been exploited for the isolation of mutants that show dominant phenotypes resulting from the ectopic expression of endogenous genes induced by the insertion of a foreign promoter. Here we describe new T-DNA tagged Craterostigma desiccation-tolerant (cdt) mutants with different molecular and physiological characteristics, suggesting that different pathways of desiccation tolerance are affected. One of the mutants, cdt-2, constitutively expresses known osmoprotective Lea genes in callus and leaf tissue. Further analysis of this mutant revealed that the tagged locus is similar to a previously characterised gene, CDT-1, which codes for a signalling molecule that confers desiccation tolerance. The nature of the T-DNA insertion provides insight into the mechanism by which the CDT-1/2 gene family functions in ABA signal transduction.  相似文献   

3.
Trehalose is thought to be important for desiccation tolerance in a number of organisms, including Saccharomyces cerevisiae, but there is limited in vivo evidence to support this hypothesis. In wild-type yeast, the degree of desiccation tolerance has been shown previously to increase in cultures after diauxic shift and also in exponential-phase cultures after exposure to heat stress. Under both these conditions, increased survival of desiccation correlates with elevated intracellular trehalose concentrations. Our data confirm these findings, but we have tested the apparent importance of trehalose using mutant strains with a deleted trehalose-6-phosphate synthase gene (tps1Delta). Although tps1Delta strains do not produce trehalose, they are nevertheless capable of desiccation tolerance, and the degree of tolerance also increases after diauxic shift or heat stress, albeit slightly less than in the wild type. Conversely, when wild-type yeast is subjected to osmotic stress, mid-exponential-phase cultures produce high concentrations of intracellular trehalose but show little improvement in desiccation tolerance. These results show that there is no consistent relationship between intracellular trehalose levels and desiccation tolerance in S. cerevisiae. Trehalose seems to be neither necessary nor sufficient for, although in some strains might quantitatively improve, survival of desiccation, suggesting that other adaptations are more important.  相似文献   

4.
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation.  相似文献   

5.
苔藓植物耐旱机制研究进展   总被引:11,自引:0,他引:11  
耐旱藓类快速脱水并存活的能力可由快速建立起来的对环境变化的耐受机制来反映,保护细胞完整性的组成型机制与修复细胞损伤的诱导机制协同作用使苔藓植物渡过干旱胁迫.再水化时光合系统原初恢复非常迅速;ABA处理可显著改变PSⅡ的生理特征;基因表达的变化主要由翻译调控引起;脱水组织中贮存mRNPs既保护了mRNAs,又加快了再水化修复速度.山墙藓(Tortula ruralis)是耐旱研究较多的一个种,已建立了表达序列文库(EST),将会成为耐旱研究的重要模式植物.  相似文献   

6.
Intertidal seaweeds are periodically exposed during low tide and thus experience extreme levels of desiccation. The physiological activity of seaweeds changes during this water loss process. This study examined how desiccation affects the photosynthesis and respiration of seaweeds from different intertidal levels, and whether the ability to retain photosynthesis and respiration rates during desiccation varies among these species. Photosynthesis and respiration rates of 12 species of seaweeds were measured under various levels of desiccation, using an infrared CO2 gas analyzer. High levels of drought negatively affected photosynthesis, while most species showed initial rises in photosynthetic rates. The ability to retain photosynthesis and respiration activities under desiccation conditions varied among species. These physiological responses were not related to the intertidal level at which these species occur, but to their ability to prevent water loss. The species with lower rates of water loss had slower declines in the rate of photosynthesis and respiration.  相似文献   

7.
苔藓植物耐旱机制研究进展   总被引:1,自引:0,他引:1  
耐旱藓类快速脱水并存活的能力可由快速建立起来的对环境变化的耐受机制来反映,保护细胞完整性的组成型机制与修复细胞损伤的诱导机制协同作用使苔藓植物渡过干旱胁迫。再水化时光合系统原初恢复非常迅速;ABA处理可显著改变PSⅡ的生理特征;基因表达的变化主要由翻译调控引起;脱水组织中贮存mRNPs既保护了mRNAs, 又加快了再水化修复速度。山墙藓(Tortula ruralis)是耐旱研究较多的一个种,已建立了表达序列文库(EST),将会成为耐旱研究的重要模式植物。  相似文献   

8.
The evolution of vegetative desiccation tolerance in land plants   总被引:16,自引:0,他引:16  
Oliver  Melvin J.  Tuba  Zoltán  Mishler  Brent D. 《Plant Ecology》2000,151(1):85-100
Vegetative desiccation tolerance is a widespread but uncommon occurrence in the plant kingdom generally. The majority of vegetative desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 60 to 70 species of ferns and fern allies, and approximately 60 species of angiosperms that exhibit some degree of vegetative desiccation tolerance. In this report we analyze the evidence for the differing mechanisms of desiccation tolerance in different plants, including differences in cellular protection and cellular repair, and couple this evidence with a phylogenetic framework to generate a working hypothesis as to the evolution of desiccation tolerance in land plants. We hypothesize that the initial evolution of vegetative desiccation tolerance was a crucial step in the colonization of the land by primitive plants from an origin in fresh water. The primitive mechanism of tolerance probably involved constitutive cellular protection coupled with active cellular repair, similar to that described for modern-day desiccation-tolerant bryophytes. As plant species evolved, vegetative desiccation tolerance was lost as increased growth rates, structural and morphological complexity, and mechanisms that conserve water within the plant and maintain efficient carbon fixation were selected for. Genes that had evolved for cellular protection and repair were, in all likelihood, recruited for different but related processes such as response to water stress and the desiccation tolerance of reproductive propagules. We thus hypothesize that the mechanism of desiccation tolerance exhibited in seeds, a developmentally induced cellular protection system, evolved from the primitive form of vegetative desiccation tolerance. Once established in seeds, this system became available for induction in vegetative tissues by environmental cues related to drying. The more recent, modified vegetative desiccation tolerance mechanism in angiosperms evolved from that programmed into seed development as species spread into very arid environments. Most recently, certain desiccation-tolerant monocots evolved the strategy of poikilochlorophylly to survive and compete in marginal habitats with variability in water availability.  相似文献   

9.
Two new abscisic acid (ABA)-insensitive mutants of Arabidopsis thaliana affected in the abi3 locus are described. These new mutants are severely ABA insensitive. Like the earlier described abi3-1 and the ABA-deficient and -insensitive double mutant aba,abi3, these new mutants vary in the extent of ABA-correlated physiological responses. Mutant seeds fail to degrade chlorophyll during maturation and show no dormancy, and desiccation tolerance and longevity are poorly developed. Carbohydrate accumulation as well as synthesis of LEA or RAB proteins are often suggested to be essential for acquisition of desiccation tolerance. In this work two points are demonstrated. (a) Accumulation of carbohydrates as such does not correlate with acquisition of desiccation tolerance or longevity. It is suggested that a low ratio of mono- to oligosac-charides rather than the absolute amount of carbohydrates controls seed longevity or stability to desiccation tolerance. (b) Synthesis of a few assorted proteins, which is responsive to ABA in the later part of seed maturation, is not correlated with desiccation tolerance or longevity.  相似文献   

10.
Duration of emergence increases with tidal height on rocky shores therefore, emergence adaptations in intertidal species such as littorine and other prosobranch gastropods have been considered correlated with zonation patterns; temperature tolerance, desiccation resistance and aerial respiration rate all commonly assumed to increase progressively with increasing zonation level. Such direct correlations are rarely observed in nature. Maximal aerial gas exchange occurs in mid-shore, not high shore species. Temperature tolerance and desiccation resistance do not increase directly with shore height. Thus, hypotheses regarding physiological correlates of zonation require revaluation. A new hypothesis is presented that the high tide mark presents a single major physiological barrier on rocky shores. Above it, snails experience prolonged emergence and extensive desiccation; below it, predictable submergence and rehydration with each tidal cycle. Thus, desiccation stress is minimal below the high tide mark and maximal above it. Therefore, species restricted below high tide (the eulittoral zone) should display markedly different adaptive strategies to emergence than those above it (the eulittoral fringe). A review of the literature indicated that adaptations in eulittoral species are dominated by those allowing maintenance of activity and foraging in air including: evaporative cooling; low thermal tolerance; elevated aerial O2 uptake rates; and high capacity for radiant heat absorption. Such adaptations exacerbate evaporative water loss. In contrast, species restricted to the eulittoral fringe display adaptive strategies that minimize desiccation and prolong survival of emergence including: foot withdrawal, preventing heat conduction from the substratum; aestivation in air; elevated thermal tolerance reducing necessity for evaporative cooling; position maintenance by cementation to the substratum and increased capacity for heat dissipation. In order to test of this hypothesis the upper thermal limits, tissue and substratum temperatures on emergence in direct sunlight and evaporative water loss and tissue temperatures on emergence in 40 °C were evaluated for specimens of six species of eulittoral and eulittoral fringe gastropods from a granite shore on Princess Royal Harbour near Albany, Western Australia. The results were consistant with adaptation to the proposed desiccation barrier at high tide. The eulittoral species, Austrocochlea constricta, Austrocochlea concamerata, Nerita atramentosa and Lepsiella vinosa, displayed adaptations dominated by maintenance of activity and foraging during emergence while the eulittoral fringe littorine species, Bembicium vittatum and Nodilittorina unifasciata displayed adaptations dominated by minization of activity and evaporative water loss during emergence. The evolution of adaptations allowing tolerance of prolonged desiccation have allowed littorine species to dominate high intertidal rocky shore gastropod faunas throughout the world's oceans.  相似文献   

11.
The effect of HSP12 deletion on the response of yeast to desiccation was investigated. The Deltahsp12 strain was found to be more desiccation tolerant than the wild-type strain. Furthermore, the increased intracellular trehalose levels in the Deltahsp12 strain suggested that this strain compensated for the lack of Hsp12p synthesis by increasing trehalose synthesis, which facilitated increased desiccation tolerance. Results obtained from flow cytometry using the membrane exclusion dye propidium iodide suggested that Hsp12p helped maintain plasma membrane integrity during desiccation. Analysis of the oxidative loads experienced by the wild-type and Deltahsp12 strains showed that during mid-exponential phase, the increased trehalose levels present in the Deltahsp12 cells resulted in increased protection of these cells against reactive oxygen species compared with wild-type cells. During stationary phase, lower levels of reactive oxygen species reduction by reduced glutathione was enhanced in the wild-type strain, which displayed lower intracellular trehalose concentrations. Comparison of the tolerance of the wild-type and Deltahsp12 strains with applied oxidative stress showed that the Deltahsp12 strain was more tolerant to exogenously applied H2O2, which we attributed to the higher intracellular trehalose concentration. Flow cytometry demonstrated that Hsp12p played a role in maintaining plasma membrane integrity during applied oxidative stress.  相似文献   

12.
Water is a major limiting factor in growth and reproduction in plants. The ability of tissues to survive desiccation is commonly found in seeds or pollen but rarely present in vegetative tissues. Resurrection plants are remarkable as they can tolerate almost complete water loss from their vegetative tissues such as leaves and roots. Metabolism is shut down as they dehydrate and the plants become apparently lifeless. Upon rehydration these plants recover full metabolic competence and ‘resurrect’. In order to cope with desiccation, resurrection plants have to overcome a number of stresses as water is lost from the cells, among them oxidative stress, destabilization or loss of membrane integrity and mechanical stress. This review will mainly focus on the effect of dehydration in angiosperm resurrection plants and some of the strategies developed by these plants to tolerate desiccation. Resurrection plants are important experimental models and understanding the physiological and molecular aspects of their desiccation tolerance is of great interest for developing drought‐tolerant crop species adapted to semi‐arid areas.  相似文献   

13.
The discovery,scope, and puzzle of desiccation tolerance in plants   总被引:7,自引:0,他引:7  
Alpert  Peter 《Plant Ecology》2000,151(1):5-17

The modern scientific study of desiccation tolerance began in 1702 when Anthony von Leeuwenhoek discovered that rotifers could survive without water for months. By 1860, the controversy over whether organisms could dry up without dying had reached such a pitch that a special French commission was convened to adjudicate the dispute. In 2000, we know that a few groups of animals and a wide variety of plants can tolerate desiccation in the active, adult stages of their life cycles. Among plants, this includes many lichens and bryophytes, a few ferns, and a very few flowering plants, but no gymnosperms nor trees. Some desiccation-tolerant species can survive without water for over ten years, recover from desiccation to unmeasurably low water potentials, and, when plants are desiccated, endure temperature extremes from ?272 to 100 °C. Desiccation-tolerant plants occur on all continents but mainly in xeric habitats or microhabitats where the cover of desiccation-sensitive species is low. Two main puzzles arise from these patterns: What are the mechanisms by which plants tolerate desiccation? and Why are desiccation-tolerant plants not more ecologically widespread? Recent molecular and biochemical studies suggest that there are multiple mechanisms of tolerance, many of which involve protection from oxidants and from the loss of configuration of macromolecules during dehydration. Hypotheses to explain the restricted ecological range of desiccation-tolerance plants include inability to maintain a cumulative positive carbon balance during repeated cycles of wetting and drying and inherent trade offs between desiccation tolerance and growth rate.

  相似文献   

14.
Staphylococcus aureus is a multidrug-resistant pathogen that not only causes a diverse array of human diseases, but also is able to survive in potentially dry and stressful environments, such as the human nose, on skin and on inanimate surfaces such as clothing and surfaces. This study investigated parameters governing desiccation tolerance of S. aureus and identified several components involved in the process. Initially, the role of environmental parameters such as temperature, growth phase, cell density, desiccation time and protectants in desiccation tolerance were determined. This established a robust model of desiccation tolerance in which S. aureus has the ability to survive on dry plastic surfaces for more than 1,097 days. Using a combination of a random screen and defined mutants, clpX, sigB and yjbH were identified as being required for desiccation tolerance. ClpX is a part of the ATP-dependent ClpXP protease, important for protein turnover, and YjbH has a proposed linked function. SigB is an accessory sigma factor with a role in generalized stress resistance. Understanding the molecular mechanisms that govern desiccation tolerance may determine the break points to be exploited to prevent the spread of this dangerous pathogen in hospitals and communities.  相似文献   

15.
Desiccation tolerance is the capacity to survive complete drying. It is an ancient trait that can be found in prokaryotes, fungi, primitive animals (often at the larval stages), whole plants, pollens and seeds. In the dry state, metabolism is suspended and the duration that anhydrobiotes can survive ranges from years to centuries. Whereas genes induced by drought stress have been successfully enumerated in tissues that are sensitive to cellular desiccation, we have little knowledge as to the adaptive role of these genes in establishing desiccation tolerance at the cellular level. This paper reviews postgenomic approaches in a variety of desiccation tolerant organisms in which the genetic responses have been investigated when they acquire the capacity of tolerating extremes of dehydration or when they are dry. Accumulation of non-reducing sugars, LEA proteins and a coordinated repression of metabolism appear to be the essential and universal attributes that can confer desiccation tolerance. The protective mechanisms of these attributes are described. Furthermore, it is most likely that other mechanisms have evolved since the function of about 30% of the genes involved in desiccation tolerance remains to be elucidated. The question of the overlap between desiccation tolerance and drought tolerance is briefly addressed.  相似文献   

16.
The limits and frontiers of desiccation-tolerant life   总被引:3,自引:0,他引:3  
Drying to equilibrium with the air is lethal to most speciesof animals and plants, making drought (i.e., low external waterpotential) a central problem for terrestrial life and a majorcause of agronomic failure and human famine. Surprisingly, awide taxonomic variety of animals, microbes, and plants do toleratecomplete desiccation, defined as water content below 0.1 g H2Og–1 dry mass. Species in five phyla of animals and fourdivisions of plants contain desiccation-tolerant adults, juveniles,seeds, or spores. There seem to be few inherent limits on desiccationtolerance, since tolerant organisms can survive extremely intenseand prolonged desiccation. There seems to be little phylogeneticlimitation of tolerance in plants but may be more in animals.Physical constraints may restrict tolerance of animals withoutrigid skeletons and to plants shorter than 3 m. Physiologicalconstraints on tolerance in plants may include control by hormoneswith multiple effects that could link tolerance to slow growth.Tolerance tends to be lower in organisms from wetter habitats,and there may be selection against tolerance when water availabilityis high. Our current knowledge of limits to tolerance suggeststhat they pose few obstacles to engineering tolerance in prokaryotesand in isolated cells and tissues, and there has already beenmuch success on this scientific frontier of desiccation tolerance.However, physical and physiological constraints and perhapsother limits may explain the lack of success in extending toleranceto whole, desiccation-sensitive, multicellular animals and plants.Deeper understanding of the limits to desiccation tolerancein living things may be needed to cross this next frontier.  相似文献   

17.
Dang NX  Hincha DK 《Cryobiology》2011,62(3):188-193
Hydrophilins are a group of proteins that are present in all organisms and that have been defined as being highly hydrophilic and rich in glycine. They are assumed to play important roles in cellular dehydration tolerance. There are 12 genes in the yeast Saccharomyces cerevisiae that encode hydrophilins and most of these genes are stress responsive. However, the functional role of yeast hydrophilins, especially in desiccation and freezing tolerance, is largely unknown. Here, we selected six candidate hydrophilins for further analysis. All six proteins were predicted to be intrinsically disordered, i.e. to have no stable structure in solution. The contribution of these proteins to the desiccation and freezing tolerance of yeast was investigated in the respective knock-out strains. Only the disruption of the genes YJL144W and YMR175W (SIP18) resulted in significantly reduced desiccation tolerance, while none of the strains was affected in its freezing tolerance under our experimental conditions. Complementation experiments showed that yeast cells overexpressing these two genes were both more desiccation and freezing tolerant, confirming the role of these two hydrophilins in yeast dehydration stress tolerance.  相似文献   

18.
Non-disaccharide-based mechanisms of protection during drying   总被引:6,自引:0,他引:6  
Few tissues or organisms can survive the removal of nearly all their intra and extracellular water. These few have developed specialized adaptations to protect their cellular components from the damage caused by desiccation and rehydration. One mechanism, common to almost all such organisms, is the accumulation of disaccharides within cells and tissues at the onset of dehydration. This adaptation has been extensively studied and will not be considered in this review. It has become increasingly clear that true desiccation tolerance is likely to involve several mechanisms working in concert; thus, we will highlight several other important and complimentary adaptations found especially in the dehydration-resistant tissues of higher plants. These include the scavenging of reactive oxygen species, the down-regulation of metabolism, and the accumulation of certain amphiphilic solutes, proteins, and polysaccharides.  相似文献   

19.
Understanding the desiccation survival attributes of infective juveniles of entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis, is central to evaluating the reality of enhancing the shelf-life and field persistence of commercial formulations. Early work on the structural and physiological aspects of desiccation survival focused on the role of the molted cuticle in controlling the rate of water loss and the importance of energy reserves, particularly neutral lipids. The accumulation of trehalose was also found to enhance desiccation survival. Isolation of natural populations that can survive harsh environments, such as deserts, indicated that some populations have enhanced abilities to survive desiccation. However, survival abilities of EPN are limited compared with those of some species of plant-parasitic nematodes inhabiting aerial parts of plants. Research on EPN stress tolerance has expanded on two main lines: i) to select strains of species, currently in use commercially, which have increased tolerance to environmental extremes; and ii) to utilize molecular information, including expressed sequence tags and genome sequence data, to determine the underlying genetic factors that control longevity and stress tolerance of EPN. However, given the inherent limitations of EPN survival ability, it is likely that improved formulation will be the major factor to enhance EPN longevity and, perhaps, increase the range of applications.  相似文献   

20.
陆生念珠藻的耐干旱机制   总被引:7,自引:3,他引:7  
念珠藻(Nostoc)是一类典型的耐干旱植物,它们的分布相当广泛,许多种都可在极端干燥的条件下生存。目前,对念珠藻尤其是陆生念珠藻耐干旱机制的探讨及其耐旱相关问题的研究是许多学者关注的热点。从总体上来说,念珠藻耐干旱的机制是其结构、生理及分子水平上协调作用的综合反映。作者对与高等植物不同的念珠藻特有的耐干旱机制进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号