共查询到20条相似文献,搜索用时 0 毫秒
1.
Idris Adewale Ahmed Maryam Abimbola Mikail Mohammad Rais Mustafa Muhammad Ibrahim Rozana Othman 《Saudi Journal of Biological Sciences》2019,26(7):1519-1524
Non-alcoholic fatty liver disease (NAFLD) is a multi-factorial disease and the most common of chronic liver diseases worldwide. The four clinical-pathological entities which are usually followed by NAFLD course include non-alcoholic steatosis, non-alcoholic steatohepatitis, advanced fibrosis/cirrhosis, and hepatocellular carcinoma. The cornerstones of NAFLD management and treatment, however, are healthy lifestyles such as dietary modifications, regular physical activity, and gradual weight loss. At present, no drugs or pharmacological agents have been approved for long-term treatment of NAFLD. Therefore, lifestyle modification is considered the main clinical recommendation and an initial step for the management of NAFLD. 相似文献
2.
Fan Li Gang Sun Zikai Wang Wenming Wu He Guo Lihua Peng Lili Wu Xu Guo Yunsheng Yang 《中国科学:生命科学英文版》2018,61(7):770-778
This study was designed to investigate the gut microbiota of patients with non-alcoholic fatty liver disease. The inclusive and exclusive criteria for NAFLD patients and healthy subjects were formulated, and detailed clinical data were collected. The genomic DNA of stool samples were extracted for 16S rDNA sequencing, and the amplified V4-region was sequenced on the Illumina Miseq platform. Metastats analysis was performed to identify the differential taxa between the groups. Redundancy analysis was used to evaluate the association between gut microbial structure and clinical variables. Thirty NAFLD patients and 37 healthy controls were involved. The 16S rDNA sequencing showed that there was a dramatic variability of the fecal microbiota among all the individuals. Metastats analysis identified eight families and 12 genera with significant differences between the two groups. When some clinical parameters, such as waist-to-hip ratio (WHR) and homeostasis model assessment of insulin resistance (HOMA-IR), were enrolled in Redundancy analysis, the distribution of the two group of samples was obviously changed. The compositional shifts in fecal bacterial communities of NAFLD patients from the healthy controls were mainly at family or genus levels. According to our Redundancy analysis, insulin resistance and obesity might be closely related to both NAFLD phenotype and intestinal microecology. 相似文献
3.
PURPOSE OF REVIEW: The hallmark of non-alcoholic fatty liver disease is hepatic steatosis. This is mostly a benign condition, but for largely unknown reasons it progresses to liver fibrosis, cirrhosis, and ultimately hepatocellular carcinoma in about 10% of patients. In this review we discuss recent progress in the understanding of the etiology of non-alcoholic fatty liver disease. RECENT FINDINGS: In the last few years many connections between carbohydrate and triglyceride homeostasis, as well as inflammation, have surfaced. These seemingly unrelated metabolic pathways are linked by the action of diverse nuclear receptors. Many intermediates in lipid metabolism were shown to be activating ligands of these receptors, explaining the dysregulation of intermediary metabolism and induction of insulin resistance by a lipid overload. In addition to invoking a derangement in nuclear receptor regulation, excessive hepatic lipid influx may have direct metabolic consequences, particularly on mitochondrial function. SUMMARY: Non-alcoholic fatty liver disease is a multifactorial disease. Many aspects of the disease and the links to inflammation can be understood when the multiple functions of the regulating nuclear receptors are taken into account. Many of these nuclear receptors seem attractive targets to develop therapy for non-alcoholic fatty liver disease and the closely related metabolic syndrome. 相似文献
4.
Samuel VT Liu ZX Qu X Elder BD Bilz S Befroy D Romanelli AJ Shulman GI 《The Journal of biological chemistry》2004,279(31):32345-32353
Short term high fat feeding in rats results specifically in hepatic fat accumulation and provides a model of non-alcoholic fatty liver disease in which to study the mechanism of hepatic insulin resistance. Short term fat feeding (FF) caused a approximately 3-fold increase in liver triglyceride and total fatty acyl-CoA content without any significant increase in visceral or skeletal muscle fat content. Suppression of endogenous glucose production (EGP) by insulin was diminished in the FF group, despite normal basal EGP and insulin-stimulated peripheral glucose disposal. Hepatic insulin resistance could be attributed to impaired insulin-stimulated IRS-1 and IRS-2 tyrosine phosphorylation. These changes were associated with activation of PKC-epsilon and JNK1. Ultimately, hepatic fat accumulation decreased insulin activation of glycogen synthase and increased gluconeogenesis. Treatment of the FF group with low dose 2,4-dinitrophenol to increase energy expenditure abrogated the development of fatty liver, hepatic insulin resistance, activation of PKC-epsilon and JNK1, and defects in insulin signaling. In conclusion, these data support the hypothesis hepatic steatosis leads to hepatic insulin resistance by stimulating gluconeogenesis and activating PKC-epsilon and JNK1, which may interfere with tyrosine phosphorylation of IRS-1 and IRS-2 and impair the ability of insulin to activate glycogen synthase. 相似文献
5.
Zhen Yang Jie Wen Xiaoming Tao Bin Lu Yanping Du Mei Wang Xuanchun Wang Weiwei Zhang Wei Gong Charlotte Ling Songhua Wu Renming Hu 《Molecular biology reports》2011,38(2):1145-1150
Recent genome-wide association studies reported that GCKR rs780094 polymorphism is associated with elevated fasting serum triglyceride levels and elevated levels of C-reactive protein (CRP). There are a ample of data on the association between circulating triglyceride, CRP concentrations and risk of non-alcoholic fatty liver (NAFLD). To determine whether the GCKR rs780094 polymorphism contributes to the development of non-alcoholic fatty liver, a case?Ccontrol study was performed in 903 Chinese subjects. Among study population, 436 patients with B-mode ultrasound-proven NAFLD (318 with steatosis hepatis I°, 90 with steatosis hepatis II° and 28 with steatosis hepatis III°) and 467 controls were genotyped by using TaqMan allelic discrimination assays. We confirmed the association of GCKR rs780094 with NAFLD in Chinese people (OR = 1.607, 95% CI 1.139?C2.271, P [dom] = 7.2 × 10?3). In this study, polymorphism in GCKR rs780094 was not significantly associated with the degree of fatty infiltration of the liver. In addition, the T-allele of GCKR rs780094 was significantly associated with increasing fasting triglyceride (P [add] = 3.8 × 10?4) and CRP (P [add] = 2.9 × 10?4) concentrations after adjusting for age, gender, and BMI. The association with NAFLD remained significant after adjustment for triglyceride, while adjustment for CRP abolished the association. Genetic variation in GCKR gene rs780094 polymorphism contributes to the risk of NAFLD in Chinese people. The effect of genotype on NAFLD is probably mediated through chronic low-grade systemic inflammation rather than through dislipidemia. 相似文献
6.
Vikram Prasad Shivani Chirra Rohit Kohli Gary E. Shull 《Biochemical and biophysical research communications》2014
Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na+/H+ exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors. 相似文献
7.
S. F. Solga A. Alkhuraishe K. Cope A. Tabesh J. M. Clark M. Torbenson P. Schwartz T. Magnuson A. M. Diehl T. H. Risby 《Biomarkers》2006,11(2):174-183
Breath biomarkers have the potential to offer information that is similar to conventional clinical tests or they are entirely unique. Preliminary data support the use of breath biomarkers in the study of liver disease, in particular non-alcoholic fatty liver disease (NAFLD). It was evaluated whether breath ethanol, ethane, sulfur compounds and acetone would be associated with hepatic histopathology amongst morbidly obese patients presenting for bariatric surgery. Breath samples were collected during a preoperative visit and compared with liver biopsies obtained during the surgery. A Student's two-tailed t-test was used to compare differences between the two groups. Linear regression was used to analyse associations between the concentrations of breath molecules and independent predictor variables. It was found that breath ethanol, ethane and acetone can be useful biomarkers in patients with NAFLD. In particular, breath ethanol can be associated with hepatic steatosis, and breath acetone can be associated with non-alcoholic steatohepatitis. 相似文献
8.
Non-alcoholic fatty liver disease (NAFLD) is and will continue to be a major liver health issue worldwide in the coming decades. There are no leading drug candidates at this point, although there are several promising concepts in drug development. Recent studies have proposed a possible role of intestinal bacterial overgrowth in the development of non-alcoholic steatohepatitis, thus indicated probiotics maybe a potential specific liver drug for NAFLD in the future. 相似文献
9.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world and its prevalence is rising. In the absence of disease progression, fatty liver poses minimal risk of detrimental health outcomes. However, advancement to non-alcoholic steatohepatitis (NASH) confers a markedly increased likelihood of developing severe liver pathologies, including fibrosis, cirrhosis, organ failure, and cancer. Although a substantial percentage of NAFLD patients develop NASH, the genetic and molecular mechanisms driving this progression are poorly understood, making it difficult to predict which patients will ultimately develop advanced liver disease. Deficiencies in mechanistic understanding preclude the identification of beneficial prognostic indicators and the development of effective therapies. Mouse models of progressive NAFLD serve as a complementary approach to the direct analysis of human patients. By providing an easily manipulated experimental system that can be rigorously controlled, they facilitate an improved understanding of disease development and progression. In this review, we discuss genetically- and chemically-induced models of NAFLD that progress to NASH, fibrosis, and liver cancer in the context of the major signaling pathways whose disruption has been implicated as a driving force for their development. Additionally, an overview of nutritional models of progressive NAFLD is provided. 相似文献
10.
Kearney JA 《Current opinion in genetics & development》2011,21(3):349-353
Genetic modifiers make an important contribution to neurological disease phenotypes. Significant progress has been made by studying genetic modifiers in model organisms. The ability to study complex genetic interactions in model systems contributes to our understanding of the genetic factors that influence neurological disease. This will lead to the development of novel therapeutic strategies and personalized treatment based on genetic risk. 相似文献
11.
Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease 总被引:5,自引:0,他引:5
Non-alcoholic fatty liver disease (NAFLD) is emerging as a major cause of chronic liver disease in association with the rising prevalence of obesity and type 2 diabetes in the population. Oxidative stress and insulin resistance (IR) are major contributors in the pathogenesis of NAFLD and in the progression from steatosis to steatohepatitis. Recently, Houstis and colleagues reported that reactive oxygen species have a causal role in multiple forms of IR, a phenomenon that can further promote exacerbation of oxidative stress. The improvement of the knowledge of these interrelationships should contribute to elucidate pathogenic pathways and design effective treatments for NAFLD. 相似文献
12.
Yoichi Asaoka Shuji Terai Isao Sakaida Hiroshi Nishina 《Disease models & mechanisms》2013,6(4):905-914
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excessive fat accumulates in the liver of an individual who has not consumed excessive alcohol. Non-alcoholic steatohepatitis (NASH), a severe form of NAFLD, can progress to hepatic cirrhosis and/or hepatocellular carcinoma (HCC). NAFLD is considered to be a hepatic manifestation of metabolic syndrome, and its incidence has risen worldwide in lockstep with the increased global prevalence of obesity. Over the last decade, rodent studies have yielded an impressive list of molecules associated with NAFLD and NASH pathogenesis. However, the identification of currently unknown metabolic factors using mammalian model organisms is inefficient and expensive compared with studies using fish models such as zebrafish (Danio rerio) and medaka (Oryzias latipes). Substantial advances in unraveling the molecular pathogenesis of NAFLD have recently been achieved through unbiased forward genetic screens using small fish models. Furthermore, these easily manipulated organisms have been used to great advantage to evaluate the therapeutic effectiveness of various chemical compounds for the treatment of NAFLD. In this Review, we summarize aspects of NAFLD (specifically focusing on NASH) pathogenesis that have been previously revealed by rodent models, and discuss how small fish are increasingly being used to uncover factors that contribute to normal hepatic lipid metabolism. We describe the various types of fish models in use for this purpose, including those generated by mutation, transgenesis, or dietary or chemical treatment, and contrast them with rodent models. The use of small fish in identifying novel potential therapeutic agents for the treatment of NAFLD and NASH is also addressed. 相似文献
13.
《Free radical research》2013,47(11):881-893
AbstractOxysterols are oxidized species of cholesterol coming from exogenous (e.g. dietary) and endogenous (in vivo) sources. They play critical roles in normal physiologic functions such as regulation of cellular cholesterol homeostasis. Most of biological effects are mediated by interaction with nuclear receptor LXRα, highly expressed in the liver as well as in many other tissues. Such interaction participates in the regulation of whole-body cholesterol metabolism, by acting as “lipid sensors”. Moreover, it seems that oxysterols are also suspected to play key roles in several pathologies, including cardiovascular and inflammatory disease, cancer, and neurodegeneration. Growing evidence suggests that oxysterols may contribute to liver injury in non-alcoholic fatty liver disease. The present review focuses on the current status of knowledge on oxysterols’ biological role, with an emphasis on LXR signaling and oxysterols’ physiopathological relevance in NAFLD, suggesting new pharmacological development that needs to be addressed in the near future. 相似文献
14.
Banasik K Justesen JM Hornbak M Krarup NT Gjesing AP Sandholt CH Jensen TS Grarup N Andersson A Jørgensen T Witte DR Sandbæk A Lauritzen T Thorens B Brunak S Sørensen TI Pedersen O Hansen T 《PloS one》2011,6(1):e16542
Objective
Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and Methods
By integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results
273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.Conclusions
Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS. 相似文献15.
16.
17.
18.
Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease
Coulon S Francque S Colle I Verrijken A Blomme B Heindryckx F De Munter S Prawitt J Caron S Staels B Van Vlierberghe H Van Gaal L Geerts A 《Cytokine》2012,59(2):442-449
The liver is a major target of injury in obese patients. Non-alcoholic fatty liver disease (NAFLD) is present in 60-90% of obese Americans and can range from simple steatosis to the more severe non-alcoholic steatohepatitis (NASH). The onset of a chronic inflammatory reaction marks the progression from simple steatosis to NASH and the expansion of adipose tissue is strongly associated with angiogenesis. Therefore, we determined the serum concentration of inflammatory [tumor necrosis factor alpha (TNFα) and interleukin 6 (IL6)] and angiogenic [vascular endothelial growth factor A (VEGF)] cytokines and soluble VEGF receptors 1 and 2 (sVEGFR1, sVEGFR2) in the serum of an obese population with simple steatosis and NASH compared to healthy controls. Moreover, we determined the TNFα, IL6, VEGF, VEGFR1 and VEGFR2 gene expression in the liver of these simple steatosis and NASH patients. The population consisted of 30 obese patients, which were diagnosed with simple steatosis and 32 patients with NASH and compared to 30 age-and-sex matched healthy controls. Mean serum TNFα levels were elevated in the serum of simple steatosis and NASH patients compared to healthy controls, reaching significance in NASH patients. IL6 was significantly increased in simple steatosis and NASH patients compared to the healthy controls. VEGF levels were significantly elevated in patients with simple steatosis and borderline significantly elevated in NASH patients compared to the serum levels of healthy control subjects. The concentration of sVEGFR1 was significantly increased in serum of simple steatosis and NASH patients compared to controls. sVEGFR2 concentration was not significantly different in the three groups. TNFα mRNA expression was higher in NASH patients compared to simple steatosis patients. Hepatic gene expression of VEGF, VEGFR1 and VEGFR2 were slightly decreased in NASH patients compared to simple steatosis patients. These data indicate the involvement of inflammatory (TNFα and IL6), angiogenic (VEGF) cytokines and sVEGFR1 in the pathophysiology of NAFLD. 相似文献
19.
Barr J Caballería J Martínez-Arranz I Domínguez-Díez A Alonso C Muntané J Pérez-Cormenzana M García-Monzón C Mayo R Martín-Duce A Romero-Gómez M Lo Iacono O Tordjman J Andrade RJ Pérez-Carreras M Le Marchand-Brustel Y Tran A Fernández-Escalante C Arévalo E García-Unzueta M Clement K Crespo J Gual P Gómez-Fleitas M Martínez-Chantar ML Castro A Lu SC Vázquez-Chantada M Mato JM 《Journal of proteome research》2012,11(4):2521-2532
Our understanding of the mechanisms by which nonalcoholic fatty liver disease (NAFLD) progresses from simple steatosis to steatohepatitis (NASH) is still very limited. Despite the growing number of studies linking the disease with altered serum metabolite levels, an obstacle to the development of metabolome-based NAFLD predictors has been the lack of large cohort data from biopsy-proven patients matched for key metabolic features such as obesity. We studied 467 biopsied individuals with normal liver histology (n=90) or diagnosed with NAFLD (steatosis, n=246; NASH, n=131), randomly divided into estimation (80% of all patients) and validation (20% of all patients) groups. Qualitative determinations of 540 serum metabolite variables were performed using ultraperformance liquid chromatography coupled to mass spectrometry (UPLC-MS). The metabolic profile was dependent on patient body-mass index (BMI), suggesting that the NAFLD pathogenesis mechanism may be quite different depending on an individual's level of obesity. A BMI-stratified multivariate model based on the NAFLD serum metabolic profile was used to separate patients with and without NASH. The area under the receiver operating characteristic curve was 0.87 in the estimation and 0.85 in the validation group. The cutoff (0.54) corresponding to maximum average diagnostic accuracy (0.82) predicted NASH with a sensitivity of 0.71 and a specificity of 0.92 (negative/positive predictive values=0.82/0.84). The present data, indicating that a BMI-dependent serum metabolic profile may be able to reliably distinguish NASH from steatosis patients, have significant implications for the development of NASH biomarkers and potential novel targets for therapeutic intervention. 相似文献
20.
Ingrid C. Gaemers Jan M. Stallen Cindy KunneChristian Wallner Jochem van WervenAart Nederveen Wouter H. Lamers 《生物化学与生物物理学报:疾病的分子基础》2011,1812(4):447-458
The major risk factors for non-alcoholic fatty liver disease (NAFLD) are obesity, insulin resistance and dyslipidemia. The cause for progression from the steatosis stage to the inflammatory condition (non-alcoholic steatohepatitis (NASH)) remains elusive at present. Aim of this study was to test whether the different stages of NAFLD as well as the associated metabolic abnormalities can be recreated in time in an overfed mouse model and study the mechanisms underlying the transition from steatosis to NASH.Male C57Bl/6J mice were subjected to continuous intragastric overfeeding with a high-fat liquid diet (HFLD) for different time periods. Mice fed a solid high-fat diet (HFD) ad libitum served as controls. Liver histology and metabolic characteristics of liver, white adipose tisue (WAT) and plasma were studied.Both HFD-fed and HFLD-overfed mice initially developed liver steatosis, but only the latter progressed in time to NASH. NASH coincided with obesity, hyperinsulinemia, loss of liver glycogen and hepatic endoplasmatic reticulum stress. Peroxisome proliferator-activated receptor γ (Pparγ), fibroblast growth factor 21 (Fgf21), fatty acid binding protein (Fabp) and fatty acid translocase (CD36) were induced exclusively in the livers of the HFLD-overfed mice. Inflammation, reduced adiponectin expression and altered expression of genes that influence adipogenic capacity were only observed in WAT of HFLD-overfed mice.In conclusion: this dietary mouse model displays the different stages and the metabolic settings often found in human NAFLD. Lipotoxicity due to compromised adipose tissue function is likely associated with the progression to NASH, but whether this is cause or consequence remains to be established. 相似文献