首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The plant hormone cytokinin is perceived by membrane-located sensor histidine kinases. Arabidopsis (Arabidopsis thaliana) possesses three cytokinin receptors: ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and CYTOKININ RESPONSE1/AHK4. The current model predicts perception of the cytokinin signal at the plasma membrane. However, cytokinin-binding studies with membrane fractions separated by two-phase partitioning showed that in the wild type, as well as in mutants retaining only single cytokinin receptors, the major part of specific cytokinin binding was associated with endomembranes. Leaf epidermal cells of tobacco (Nicotiana benthamiana) expressing receptor-green fluorescent protein fusion proteins and bimolecular fluorescence complementation analysis showed strong fluorescence of the endoplasmic reticulum (ER) network for all three receptors. Furthermore, separation of the microsomal fraction of Arabidopsis plants expressing Myc-tagged AHK2 and AHK3 receptors by sucrose gradient centrifugation followed by immunoblotting displayed the Mg2?-dependent density shift typical of ER membrane proteins. Cytokinin-binding assays, fluorescent fusion proteins, and biochemical fractionation all showed that the large majority of cytokinin receptors are localized to the ER, suggesting a central role of this compartment in cytokinin signaling. A modified model for cytokinin signaling is proposed.  相似文献   

2.
Strains of Escherichia coli that express two different cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, were used to study the relative sensitivity of these receptors to various cytokinins. Both receptors were most sensitive to the bases of the isoprenoid-type cytokinins trans-zeatin and isopentenyladenine but differed significantly in the recognition of other cytokinin compounds. In particular, CRE1/AHK4 recognized at 1 microm concentration only trans-zeatin while AHK3 recognized cis-zeatin and dihydrozeatin as well, although with a lower sensitivity. Similarly, CRE1/AHK4 was not activated by cytokinin ribosides and ribotides, but AHK3 was. Comparisons using the ARR5::GUS fusion gene as a cytokinin reporter in Arabidopsis showed similar relative degrees of responses in planta, except that cytokinins with aromatic side chains showed much higher activities than in the bacterial assay. These results indicate that the diverse cytokinin compounds might have specific functions in the numerous cytokinin-regulated processes, which may depend in turn on different receptors and their associated signalling pathways. The importance of precise control of local concentrations of defined cytokinin metabolites to regulate the respective downstream event is corroborated.  相似文献   

3.
In Arabidopsis, three genes (AHK2, AHK3 and AHK4/CRE1) encode histidine kinases (His-kinases), which serve as cytokinin receptors. To understand how the external cytokinin signal activates the His-kinase across the cell membrane, we exploited the power of microbial genetics to isolate several AHK4 mutants that function independently of cytokinin in both prokaryotic and eukaryotic assay systems. In each mutant, a single amino acid substitution within the second membrane-spanning segment, or within the region around the phosphorylation His site, renders the His-kinase constitutively active. These mutant receptors appear to have a 'locked-on' conformation, even in the absence of stimulus. We discuss the implications of these data for the structure and function of the cytokinin receptor His-kinases in plants.  相似文献   

4.
The cytokinin receptor AHK3 of Arabidopsis thaliana plays a predominant role in shoot development. A study of the hormone-binding characteristics of AHK3 compared with the mainly root-confined receptor CRE1/AHK4 has been accomplished using a live-cell binding assay on transgenic bacteria expressing individual receptor proteins. Both receptors bound trans-zeatin (tZ) with high affinity. Scatchard analysis showed a linear function corresponding to an apparent K(D) of 1-2 nM for the AHK3 receptor-hormone complex, which is close to the K(D) (2-4 nM) for the CRE1/AHK4 receptor-hormone complex. The specific binding of tZ to both receptors was pH dependent, AHK3 being more sensitive to pH changes than CRE1/AHK4. Hormone binding was reversible, at least for the bulk of (3)H-zeatin, and influenced by monovalent cations, while divalent cations (Ca(2+), Mg(2+), Mn(2+)) at physiological concentrations had no significant effect. AHK3 differed significantly from CRE1/AHK4 in relative affinity to some cytokinins. AHK3 had an approximately 10-fold lower affinity to isopentenyladenine (iP) and its riboside, but a higher affinity to dihydrozeatin than CRE1/AHK4. For AHK3, cytokinin ribosides (tZR, iPR) and cis-zeatin had true binding activity, although lower than that of tZ. The phenylurea-derived cytokinin thidiazuron was a strong competitor and bound to the same site as did adenine-derived cytokinins. The inhibitor of cytokinin action butan-1-ol had little effect on cytokinin-receptor complex formation. The revealed properties of AHK3 suggest its specific function in root-to-shoot communication.  相似文献   

5.
We previously identified a set of structurally related genes, AHK2, 3 and 4, each encoding a sensor histidine kinase in Arabidopsis thaliana. To determine the relevant biological functions, we identified a loss-of-function mutation of the AHK4 gene. The mutant exhibited the cytokinin-resistant phenotype not only in inhibition of root growth by cytokinin but also in greening and shoot induction of calli. Moreover, AHK4 expressed in budding yeast showed histidine kinase activity in a manner dependent on the presence of cytokinin. These results strongly suggested that AHK4 is involved in the cytokinin-signaling pathway, as a direct receptor molecule, in Arabidopsis.  相似文献   

6.
The plant hormone cytokinin is implicated in a large number of developmental and physiological processes. In the model plant Arabidopsis thaliana cytokinin is perceived by a class of membrane-bound receptor histidine kinases with three members, namely AHK2, AHK3, and CRE1/AHK4. These receptors possess an N-terminally located putative extracellular cyclases/histidine kinases associated sensor extracellular (CHASE) domain, which is responsible for hormone recognition. This hydrophilic domain and the two flanking transmembrane regions (CHASE-TM) were expressed using a cell-free protein expression system based on a bacterial ribosomal extract. To obtain soluble CHASE-TM protein, different detergents were directly added to the cell-free reaction and their effect on the yield of soluble protein was studied. After optimising the experimental set-up and employing Brij 58 as a detergent more than 3 mg/ml soluble protein of the CHASE-TM domain were obtained. Affinity purification via a C-terminally fused His-tag resulted in greater than 90% purity. The identity of the purified domain was confirmed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Circular dichroism spectroscopy was used and a predominantly α-helical folding pattern was shown, which is in good accordance with secondary structure prediction. A newly developed cytokinin binding assay confirmed the functionality of the thus expressed and purified CHASE-TM domain. The work presented clearly demonstrates the feasibility of producing high amounts of a plant membrane protein using a cell-free protein expression system. This opens the possibility of further biochemical and pharmacological analysis, as well as structural studies on this type of receptor protein.  相似文献   

7.
Cytokinins control key processes during plant growth and development, and cytokinin receptors CYTOKININ RESPONSE 1/WOODEN LEG/ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/WOL/AHK4), AHK2, and AHK3 have been shown to play a crucial role in this control. The involvement of cytokinins in signaling the status of several nutrients, such as sugar, nitrogen, sulfur, and phosphate (Pi), has also been highlighted, although the full physiological relevance of this role remains unclear. To gain further insights into this aspect of cytokinin action, we characterized a mutant with reduced sensitivity to cytokinin repression of a Pi starvation-responsive reporter gene and show it corresponds to AHK3. As expected, ahk3 displayed reduced responsiveness to cytokinin in callus proliferation and plant growth assays. In addition, ahk3 showed reduced cytokinin repression of several Pi starvation-responsive genes and increased sucrose sensitivity. These effects of the ahk3 mutation were especially evident in combination with the cre1 mutation, indicating partial functional redundancy between these receptors. We examined the effect of these mutations on Pi-starvation responses and found that the double mutant is not significantly affected in long-distance systemic repression of these responses. Remarkably, we found that expression of many Pi-responsive genes is stimulated by sucrose in shoots and to a lesser extent in roots, and the sugar effect in shoots of Pi-starved plants was particularly enhanced in the cre1 ahk3 double mutant. Altogether, these results indicate the existence of multidirectional cross regulation between cytokinin, sugar, and Pi-starvation signaling, thus underlining the role of cytokinin signaling in nutrient sensing and the relative importance of Pi-starvation signaling in the control of plant metabolism and development.  相似文献   

8.
The Arabidopsis thaliana genome encodes a small family of histidine (His) protein kinases, some of which have redundant functions as ethylene receptors, whereas others serve as cytokinin receptors. The most poorly characterized of these is authentic histidine kinase 5 (AHK5; also known as cytokinin-independent 2, CKI2). Here we characterize three independent ahk5 mutants, and show that they have a common phenotype. Our results suggest that AHK5 His-kinase acts as a negative regulator in the signaling pathway in which ethylene and ABA inhibit the root elongation through ETR1 (an ethylene receptor).  相似文献   

9.
Arabidopsis thaliana has three membrane‐located cytokinin receptors (AHK2, AHK3 and CRE1/AHK4), which are sensor histidine kinases containing a ligand‐binding CHASE domain. Despite their structural similarity the role of these receptors differs in planta. Here we have explored which parameters contribute to signal specification. In a bacterial assay, the CHASE domain of AHK2 has a similar ligand binding spectrum as CRE1/AHK4. It shows the highest affinity for isopentenyladenine (iP) and trans‐zeatin (tZ) with an apparent KD of 1.4 and 4.0 nm , respectively. Real‐time PCR analysis of cytokinin primary response genes in double mutants retaining only single receptors revealed that all receptors are activated in planta by cytokinin concentrations in the low nanomolar range. However, there are differences in sensitivity towards the principal cytokinins iP and tZ. The activation of the cytokinin‐sensitive PARR5:GUS reporter gene in three different double mutants shows specific, but also overlapping, spatial domains of activity, which were for all receptors predominantly in the shoot apical meristems and root cap columella. AHK2 and AHK3 signal specifically in leaf parenchyma cells, AHK3 in stomata cells, and CRE1/AHK4 in the root vasculature. Promoter‐swap experiments demonstrate that CRE1/AHK4 can functionally replace AHK2 but not AHK3. However, the cytoplasmic AHK3 histidine kinase (Hk) domain can be replaced by the CRE1/AHK4 Hk domain, which suggests that functionality is mediated in this case by the extracytosolic domain. Together, the data show that both differential gene expression and ligand preference contribute to specify the receptor activity.  相似文献   

10.
Common histidine-to-aspartate (His-->Asp) phosphorelay is a paradigm of signal transduction in both prokaryotes and eukaryotes for the propagation of certain environmental stimuli, in which histidine (His)-kinases play central roles as sensors for environmental signals. For the higher plant, Arabidopsis thaliana, it was recently suggested that the His-kinase (AHK4 / CRE1 / WOL) is a sensor for cytokinins, which are a class of plant hormones important for the regulation of cell division and differentiation. Interestingly, AHK4 is capable of functioning as a cytokinin sensor in the eubacterium, Escherichia coli (Suzuki et al. 2001, Plant Cell Physiol. 42: 107). Here we further show that AHK4 is a primary receptor that directly binds a variety of natural and synthetic cytokinins (e.g. not only N(6)-substituted aminopurines such as isopentenyl-adenine, trans-zeatin, benzyl-adenine, but also diphenylurea derivatives such as thidiazuron), in a highly specific manner (K(d) = 4.55+/-0.48x10(-9) M). AHK4 has a presumed extracellular domain, within which a single amino acid substitution (Thr-301 to Ile) was shown to result in loss of its ability to bind cytokinins. This particular mutation corresponds to the previously reported wol allele (wooden leg) that causes a striking phenotype defective in vascular morphogenesis. Collectively, evidence is presented that AHK4 and its homologues (AHK3 and possibly AHK2) are receptor kinases that can transduce cytokinin signals across the plasma membrane of A. thaliana.  相似文献   

11.
Cytokinin signaling in Arabidopsis thaliana utilizes a multi-step two-component signaling (TCS) system comprised of sensor histidine kinases (AHKs), histidine phosphotransfer proteins (AHPs), and response regulators (ARRs). Recent studies have suggested that the cytokinin TCS system is involved in a variety of other signaling and metabolic pathways. To further explore a potential function of the cytokinin TCS in the Arabidopsis dehydration stress response, we investigated the expression of all type-A ARR genes and a type-C ARR, ARR22, in both wild type and ahk single, double, and triple mutants in response to dehydration compared to cytokinin as well as dehydration tolerance of ahk mutants. We found that drought significantly induced the expression of a subset of ARR genes, ARR5, ARR7, ARR15, and ARR22. The results of expression analyses in ahk single, double, and triple mutants demonstrated that the cytokinin receptors AHK2 and AHK3 are redundantly involved in dehydration-inducible expression of ARR7, but not that of ARR5, ARR15, or ARR22. Dehydration tolerance assays showed that ahk2 and ahk3 single mutants exhibited enhanced dehydration tolerance compared with that of wild-type plants and ahk4 mutants, and that ahk2 ahk3 double mutants exhibited stronger drought tolerance than that of ahk3 ahk4, which exhibited more enhanced drought tolerance than that of wild-type plants and ahk single mutants. Taken together, these results demonstrate that while the cytokinin receptors AHK2 and AHK3 are critically involved in the dehydration tolerance response, both cytokinin receptor-dependent pathway and receptor-independent pathway occur in the dehydration response regulating ARR gene expression. In addition, preincubating ahk2, ahk3, ahk4, and the wild-type plants with cytokinin induced enhanced dehydration stress tolerance in these plants, demonstrating that cytokinins are involved in regulating plant response to dehydration stress.  相似文献   

12.
The cytokinin receptor AHK4 histidine kinase, identified in Arabidopsis thaliana, presumably acts in concert with downstream components, such as histidine-containing phosphotransfer (HPt) factors (AHPs) and response regulators (ARRs). In this respect, we characterized a loss-of-function mutant of the AHK4 gene, named cre1-1, which showed a reduced cell number within the vascular tissues in roots. Among the 10 type-A ARR members, the expression of ARR15 and ARR16 in roots was specifically and markedly reduced in cre1-1, suggesting a link between these response regulators and the AHK4-mediated signal transduction in roots. The results for transgenic plants expressing promoter::GUS or promoter::LUC fusion genes showed that both the ARR15 and the ARR16 gene products are accumulated upon cytokinin treatment in roots. The results of GFP-fusion experiments with onion epidermal cells further showed that ARR15 was found in the nucleus, and ARR16 mainly in the cytoplasm. Together, it was suggested that ARR15 and ARR16 are distinctly implicated in the presumed AHK4-mediated signaling pathway in roots.  相似文献   

13.
The cytokinin class of plant hormones plays key roles in regulating diverse developmental and physiological processes. Arabidopsis perceives cytokinins with three related and partially redundant receptor histidine kinases (HKs): CRE1 (the same protein as WOL and AHK4), AHK2, and AHK3 (CRE-family receptors). It is suggested that binding of cytokinins induces autophosphorylation of these HKs and subsequent transfer of the phosphoryl group to a histidine phosphotransfer protein (HPt) and then to a response regulator (RR), ultimately regulating downstream signaling events. Here we demonstrate that, in vitro and in a yeast system, CRE1 is not only a kinase that phosphorylates HPts in the presence of cytokinin but is also a phosphatase that dephosphorylates HPts in the absence of cytokinin. To explore the roles of these activities in planta, we replaced CRE1 with mutant versions of the gene or with AHK2. Replacing CRE1 with CRE1(T278I), which lacks cytokinin binding activity and is locked in the phosphatase form, decreased cytokinin sensitivity. Conversely, replacing CRE1 with AHK2, which favors kinase activity, increased cytokinin sensitivity. These results indicate that in the presence of cytokinins, cytokinin receptors feed phosphate to phosphorelay-integrating HPt proteins. In the absence of cytokinins, CRE1 removes phosphate from HPt proteins, decreasing the system phosphoload.  相似文献   

14.
Cytokinins are plant hormones involved in the essential processes of plant growth and development. They bind with receptors known as CRE1/WOL/AHK4, AHK2, and AHK3, which possess histidine kinase activity. Recently, the sensor domain cyclases/histidine kinases associated sensory extracellular (CHASE) was identified in those proteins but little is known about its structure and interaction with ligands. Distant homology detection methods developed in our laboratory and molecular phylogeny enabled the prediction of the structure of the CHASE domain as similar to the photoactive yellow protein-like sensor domain. We have identified the active site pocket and amino acids that are involved in receptor-ligand interactions. We also show that fold evolution of cytokinin receptors is very important for a full understanding of the signal transduction mechanism in plants.  相似文献   

15.
Cytokinin signal transduction in plant cells   总被引:8,自引:0,他引:8  
  相似文献   

16.
We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots.  相似文献   

17.
Cytokinins play a central role in the regulation of plant cell division and numerous developmental processes. Pleiotropic effects have made studies of this hormone difficult, and cytokinin signalling pathways have long remained elusive. The recent identification of CRE1 (a histidine kinase identical to AHK4 and WOL) as the cytokinin receptor of Arabidopsis thaliana is a landmark in cytokinin research. Mutations have been identified in CRE1, and the phenotype of loss-of-function mutations sheds new light on the role of cytokinins in plant development. This article describes the experimental paths leading to receptor identification and the current interpretation of its function.  相似文献   

18.
High levels of cytokinins (CKs) induce programmed cell death (PCD) both in animals and plant cells. High levels of the CK benzylaminopurine (BA) induce PCD in cultured cells of Arabidopsis thaliana by accelerating a senescence process characterized by DNA laddering and expression of a specific senescence marker. In this report, the question has been addressed whether members of the small family of Arabidopsis CK receptors (AHK2, AHK3, CRE1/AHK4) are required for BA-induced PCD. In this respect, suspension cell cultures were produced from selected receptor mutants. Cell growth and proliferation of all receptor mutant and wild-type cell cultures were similar, showing that the CK receptors are not required for these processes in cultured cells. The analysis of CK metabolites instead revealed differences between wild-type and receptor mutant lines, and indicated that all three receptors are redundantly involved in the regulation of the steady-state levels of isopentenyladenine- and trans-zeatin-type CKs. By contrast, the levels of cis-zeatin-type CKs were controlled mainly by AHK2 and AHK3. To study the role of CK receptors in the BA-induced PCD pathway, cultured cells were analysed for their behaviour in the presence of high levels of BA. The results show that CRE1/AHK4, the strongest expressed CK receptor gene of this family in cultured cells, is required for PCD, thus linking this process to the known CK signalling pathway.  相似文献   

19.
Cytokinin is an adenine derivative plant hormone that generally regulates plant cell division and differentiation in conjunction with auxin. We report that a major cue for the negative regulation of sulfur acquisition is executed by cytokinin response 1 (CRE1)/wooden leg (WOL)/Arabidopsis histidine kinase 4 (AHK4) cytokinin receptor in Arabidopsis root. We constructed a green fluorescent protein (GFP) reporter system that generally displays the expression of the high-affinity sulfate transporter SULTR1;2 in Arabidopsis roots. GFP under the control of SULTR1;2 promoter showed typical sulfur responses that correlate with the changes in SULTR1;2 mRNA levels; accumulation of GFP was induced by sulfur limitation (-S), but was repressed in the presence of reduced sulfur compounds. Among the plant hormones tested, cytokinin significantly downregulated the expression of SULTR1;2. SULTR1;1 conducting sulfate uptake in sultr1;2 mutant was similarly downregulated by cytokinin. Downregulation of SULTR1;1 and SULTR1;2 by cytokinin correlated with the decrease in sulfate uptake activities in roots. The effect of cytokinin on sulfate uptake was moderated in the cre1-1 mutant, providing genetic evidence for involvement of CRE1/WOL/AHK4 in the negative regulation of high-affinity sulfate transporters. These data demonstrated the physiological importance of the cytokinin-dependent regulatory pathway in acquisition of sulfate in roots. Our results suggested that two different modes of regulation, represented as the -S induction and the cytokinin-dependent repression of sulfate transporters, independently control the uptake of sulfate in Arabidopsis roots.  相似文献   

20.
The expression regulation by cytokinin of genetic constructs P AHK2 -GUS, P AHK3 -GUS, and P AHK4 -GUS in transgenic Arabidopsis thaliana (L.) Heynh plants bearing the gene encoding β-glucuronidase (GUS) under the control of the promoter of one of three genes encoding histidine protein kinases, which are membrane receptors of cytokinin was studied. In 4–5-day-old etiolated A. thaliana seedlings, treatment with cytokinin resulted in the strongest expression activation of the constructs P AHK2 -GUS and P AHK3 -GUS. The same constructs were activated by cytokinin also at the seedling transit from scoto- to photomorphogenesis. Long-term seedling growing in darkness on medium containing cytokinin resulted in the substantial promoter activation of the gene encoding the histidine kinase AHK2. In the leaves of three-week-old plants with actively functioning chloroplasts, treatment with cytokinin mainly stimulated expression of the construct P AHK3 -GUS. In detached senescing leaves, treatment with cytokinin retarded the loss of chlorophyll but did not affect significantly GUS activity under both light and darkness conditions in either of tested lines containing GUS gene under the control of promoters of histidine kinase genes. At the same time, cytokinin activated the promoter of the gene of primary response to cytokinin in the construct P ARR5 -GUS. Thus, in the studied test-system, treatment with cytokinin of A. thaliana plant grown in darkness or in the light affected differently the expression of histidine kinase genes in dependence of plant age, conditions of plant cultivation, and plant physiological state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号