首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Precision agriculture: a challenge for crop nutrition management   总被引:3,自引:0,他引:3  
Robert  P. C. 《Plant and Soil》2002,247(1):143-149
Precision agriculture was initiated in the mid 1980s, using newly available technologies, to improve the application of fertilizers by varying rates and blends as needed within fields. Presently, the concept has been adapted to a variety of practices, crops, and countries. Its adoption varies significantly by cropping system, regions, and countries but it is progressively introduced or evaluated around the world. Several types of challenges limit a broader adoption: socio-economical, agronomical, and technological. Socio-economical barriers are principally costs and lack of skills. Agronomical challenges are lack of basic information, inadequate sampling and scouting procedures, absence of site-specific fertilizer recommendations, misuse of information, and lack of qualified agronomic services. There are multiple technological barriers that relate to machinery, sensor, GPS, software, and remote sensing. However, these barriers will be progressively lifted and precision agriculture will be a significant component of the agricultural system of the future. It offers a variety of potential benefits in profitability, productivity, sustainability, crop quality, food safety, environmental protection, on-farm quality of life, and rural economic development.  相似文献   

4.
Bioenergy from plants and the sustainable yield challenge   总被引:3,自引:0,他引:3  
Bioenergy from plants, particularly from perennial grasses and trees, could make a substantial contribution to alleviation of global problems in climate change and energy security if high yields can be sustained. Here, yield traits in a range of key bioenergy crops are reviewed, from which several targets for future improvement can be identified. Some are already the focus of genetically modified (GM) and non-GM approaches. However, the efficient growth strategies of perennial bioenergy crops rely on newly assimilated and recycled carbon and remobilized nitrogen in a continually shifting balance between sources and sinks. This balance is affected by biotic (e.g. pest, disease) and abiotic (e.g. drought) stresses. Future research should focus on three main challenges: changing (photo)thermal time sensitivity to lengthen the growing season without risking frost damage or limiting remobilization of nutritional elements following senescence; increasing aboveground biomass without depleting belowground reserves required for next year's growth and thus without increasing the requirement for nutrient applications; and increasing aboveground biomass without increasing water use.  相似文献   

5.
6.
Panax ginseng C.A. Meyer (ginseng) is a well-known medicinal plant that has been traditionally used in the oriental countries for centuries. Wild ginseng is a scarce and rare commodity. Field cultivation of the ginseng plant is a time-consuming and labor-intensive process. Ginsenosides, a group of glycosylated triterpenes, also known as saponins, are the principal bioactive constituents of ginseng. The use of cell and organ culture processes has been sought as a potential alternative for the efficient mass production of ginseng raw material. Various bioprocessing strategies have been developed to date. Cells and adventitious roots have been cultured in large-scale bioreactors and various strategies have been developed accordingly for the enhancement of biomass and ginsenoside accumulation. This review highlights the recent progress in the cultivation of ginseng cell and organ cultures for the production of ginsenosides from bioreactor cultures. In addition, the metabolism and biochemistry of ginsenoside biosynthesis, genomic and proteomic studies in ginseng, metabolic engineering, biosafety, toxicological evaluation, and efficacy assessment of ginseng raw material are also summarized and thoroughly discussed.  相似文献   

7.

Goals, Scope and Background  

Eutrophication and hypoxia, which are already serious environmental issues in the Midwestern region of the United States and the Gulf of Mexico, could worsen with an increase emphasis on the use of corn and soybeans for biofuels. Eutrophication impacts from agriculture are difficult to integrate into an LCA due to annual variability in the nutrient loads as a factor of climatic conditions. This variability has not been included in many relevant energy or row crop LCAs. The objective of this research was to develop a relatively simple method to accurately quantify nutrient loadings from row crop production to surface water that reflects annual variations due to weather. A set of watersheds that comprise most of eastern Iowa was studied. Ample data describing corn-soybean agriculture in this region and nutrient loadings to the Mississippi River enabled the development, calibration and validation of the model for this particular region.  相似文献   

8.
9.
Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.  相似文献   

10.
Agricultural production, food systems and population health are intimately linked. While there is a strong evidence base to inform our knowledge of what constitutes a healthy human diet, we know little about actual food production or consumption in many populations and how developments in the food and agricultural system will affect dietary intake patterns and health. The paucity of information on food production and consumption is arguably most acute in low- and middle-income countries, where it is most urgently needed to monitor levels of under-nutrition, the health impacts of rapid dietary transition and the increasing ‘double burden’ of nutrition-related disease. Food availability statistics based on food commodity production data are currently widely used as a proxy measure of national-level food consumption, but using data from the UK and Mexico we highlight the potential pitfalls of this approach. Despite limited resources for data collection, better systems of measurement are possible. Important drivers to improve collection systems may include efforts to meet international development goals and partnership with the private sector. A clearer understanding of the links between the agriculture and food system and population health will ensure that health becomes a critical driver of agricultural change.  相似文献   

11.
12.
13.
For the foreseeable future a majority of the population, and almost all the mal- and under-nourished, will continue to be found in the tropics and subtropics. Food security in these parts of the world will have to be met largely from local resources. The productivity of the land is to a large extent determined by the fertlity of the soil, which in turn is mostly determined by its organic matter content and stored nutrients. Soil organic matter is readily lost when organic matter inputs are reduced upon cultivation and more so upon intensification. The concomitant loss of topsoil and possible exposure of subsoil acidity may cause further soil degradation.<br>Plant nutrients to replenish what is yearly taken from the soil to meet the demands for food and fibre amount to 230 million tonnes (Mt). Current fertilizer consumption stands at about 130 Mt of N, P2O5,and K2O, supplemented by an estimated 90 Mt of N from biological nitrogen fixation worldwide. Although 80 per cent of the population lives in the developing world, only half the world''s fertilizer is consumed there. Yet, as much as 50% of the increase in agricultural productivity in the developing world is due to the adoption of fertilizers. World population growth will cause a doubling in these nutrients requirements for the developing world by 2020, which, in the likely case of inadequate production, will need to be met from soil reserves. Because expansion of the cultivable land area is reaching its limits, the reliance on nutrient inputs and their efficient use is bound to grow.<br>With current urban expansion, nutrients in harvested products are increasingly lost from the rural environment as a whole. Estimates of soil nutrient depletion rates for sub-Saharan Africa (SSA) are alarmingly high. The situation may be more favourable in Latin America and Asia where fertilizer inputs are tenfold those of SSA. Closing the nutrient cycle at a community level in rural areas may be tedious; on an inter-regional level it is associated with considerable costs of collection, detoxification and transportation to the farms. Yet, at the rate at which some of the non-renewable resources such as phosphorus and potassium are being exploited, recycling of these nutrients will soon be required. <br>  相似文献   

14.
The North China Plain (NCP) is the most important agricultural production area in China. Crop production in the NCP is sensitive to changes in both climate and management practices. While previous studies showed a negative impact of climatic change on crop yield since 1980s, the confounding effects of climatic and agronomic factors have not been separately investigated. This paper used 25 years of crop data from three locations (Nanyang, Zhengzhou and Luancheng) across the NCP, together with daily weather data and crop modeling, to analyse the contribution of changes in climatic and agronomic factors to changes in grain yields of wheat and maize. The results showed that the changes in climate were not uniform across the NCP and during different crop growth stages. Warming mainly occurred during the vegetative (preflowering) growth stage of wheat and maize, while there was a cooling trend or no significant change in temperatures during the postflowering stage of wheat (spring) or maize (autumn). If varietal effects were excluded, warming during vegetative stages would lead to a reduction in the length of the growing period for both crops, generally leading to a negative impact on crop production. However, autonomous adoption of new crop varieties in the NCP was able to compensate the negative impact of climatic change. For both wheat and maize, the varietal changes helped stabilize the length of preflowering period against the shortening effect of warming and, together with the slightly reduced temperature in the postflowering period, extend the length of the grain‐filling period. The combined effect led to increased wheat yield at Zhengzhou and Luancheng; increased maize yield at Nanyang and Luancheng; stabilized wheat yield at Nanyang, and a slight reduction in maize yield at Zhengzhou, compared with the yield change caused entirely by climatic change.  相似文献   

15.
Pseudomonas aeruginosa can cause ulcerative bacterial keratitis or contact lens-induced acute red eye (CLARE) in humans. The present study used a mouse model of ocular infection and inflammation to examine the relationship between TNF-alpha and inflammation in the cornea in response to challenge with either a strain of P. aeruginosa causing keratitis or a CLARE strain. Constitutive TNF-alpha mRNA was detected in the epithelium, mainly towards the periphery. After infection with the keratitis-inducing strain (6294), TNF-alpha expression was elevated four-fold by 24 h post-challenge. No detectable induction of TNF-alpha mRNA was seen with CLARE strain (Paer1) challenge at any time point. The TNF-alpha protein production detected by ELISA showed a corresponding pattern to the mRNA expression, which also correlated with pathological changes. These results suggest that invasive strains of P. aeruginosa create greater pathological changes as a result of elevated TNF-alpha production, which contributes to inflammation during keratitis in vivo.  相似文献   

16.
Pseudomonas aeruginosa can cause ulcerative bacterial keratitis. A feature of keratitis is the rapid infiltration of the avascular corneal stroma by neutrophils. KC is a potent neutrophil chemokine. The present study used a mouse model of ocular infection to assess the relationship between KC and inflammation in the cornea in response to challenge with a strain of P. aeruginosa causing keratitis. Low levels of KC mRNA and protein were detected by in situ hybridization and ELISA, respectively, in unchallenged corneas. Dramatically increased numbers of KC mRNA+ cells were present in P. aeruginosa strain 6294-challenged corneas. Expression of KC mRNA was found to be up-regulated in the corneal epithelium in response to wounding alone. The KC mRNA+ cells were located in the epithelium and corresponding to infiltrating neutrophils cells in the stroma. Quantification of KC protein at different time points showed peak levels at 8 h of bacterial challenge. These results suggest that KC may be involved with the regulation of leucocyte infiltration early during bacterial keratitis.  相似文献   

17.
18.
The authors report on ongoing work in the Brazilian Amazon to assess the current and prospective management of rosewood (Aniba rosaeodora Ducke) populations threatened by a half-century of predatory extraction for the valuable essential oil linalool used widely in perfumery. The report synthesizes prior research on rosewood exploitation and markets and recent research to develop new essential oil products derived from rosewood leaves and stems. The study suggests alternative rosewood production systems, to guide investment in management and certification of sustainable rosewood oil supplies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号