首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing recognition that gene conversion can be an important factor in shaping fine-scale patterns of linkage disequilibrium in the human genome. We devised simple multilocus summary statistics for estimating gene-conversion rates from genomewide polymorphism data sets. In addition to being computationally feasible for very large data sets, these summaries were designed to yield robust estimates of gene-conversion rates in the presence of variation in crossing-over rates. Using our summaries, we analyzed 21,840 biallelic single-nucleotide polymorphisms (SNPs) on human chromosome 21. Our results indicate that models including both crossing over and gene conversion fit the overall short-range data (0-5 kb) of chromosome 21 much better than do models including crossing over alone. The estimated ratio of gene-conversion rate to crossing-over rate has a range of 1.6-9.4, depending on the assumed conversion tract length (in the range of 500-50 bp). Removal of the 5,696 SNPs that occur in known mutational hotspots (CpG sites) did not significantly change our conclusions, suggesting that recurrent mutations alone cannot explain our data.  相似文献   

2.
We describe a novel method for jointly estimating crossing-over and gene-conversion rates from population genetic data using summary statistics. The performance of our method was tested on simulated data sets and compared with the composite-likelihood method of R. R. Hudson. For several realistic parameter values, the new method performed similarly to the composite-likelihood approach for estimating crossing-over rates and better when estimating gene-conversion rates. We used our method to analyze a human data set recently genotyped by Perlegen Sciences.  相似文献   

3.
BackgroundSocial hymenoptera, the honey bee (Apis mellifera) in particular, have ultra-high crossover rates and a large degree of intra-genomic variation in crossover rates. Aligned with haploid genomics of males, this makes them a potential model for examining the causes and consequences of crossing over. To address why social insects have such high crossing-over rates and the consequences of this, we constructed a high-resolution recombination atlas by sequencing 55 individuals from three colonies with an average marker density of 314 bp/marker.ResultsWe find crossing over to be especially high in proximity to genes upregulated in worker brains, but see no evidence for a coupling with immune-related functioning. We detect only a low rate of non-crossover gene conversion, contrary to current evidence. This is in striking contrast to the ultrahigh crossing-over rate, almost double that previously estimated from lower resolution data. We robustly recover the predicted intragenomic correlations between crossing over and both population level diversity and GC content, which could be best explained as indirect and direct consequences of crossing over, respectively.ConclusionsOur data are consistent with the view that diversification of worker behavior, but not immune function, is a driver of the high crossing-over rate in bees. While we see both high diversity and high GC content associated with high crossing-over rates, our estimate of the low non-crossover rate demonstrates that high non-crossover rates are not a necessary consequence of high recombination rates.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0566-0) contains supplementary material, which is available to authorized users.  相似文献   

4.
Morrell PL  Toleno DM  Lundy KE  Clegg MT 《Genetics》2006,173(3):1705-1723
Recombination occurs through both homologous crossing over and homologous gene conversion during meiosis. The contribution of recombination relative to mutation is expected to be dramatically reduced in inbreeding organisms. We report coalescent-based estimates of the recombination parameter (rho) relative to estimates of the mutation parameter (theta) for 18 genes from the highly self-fertilizing grass, wild barley, Hordeum vulgare ssp. spontaneum. Estimates of rho/theta are much greater than expected, with a mean rho/theta approximately 1.5, similar to estimates from outcrossing species. We also estimate rho with and without the contribution of gene conversion. Genotyping errors can mimic the effect of gene conversion, upwardly biasing estimates of the role of conversion. Thus we report a novel method for identifying genotyping errors in nucleotide sequence data sets. We show that there is evidence for gene conversion in many large nucleotide sequence data sets including our data that have been purged of all detectable sequencing errors and in data sets from Drosophila melanogaster, D. simulans, and Zea mays. In total, 13 of 27 loci show evidence of gene conversion. For these loci, gene conversion is estimated to contribute an average of twice as much as crossing over to total recombination.  相似文献   

5.
Summary Gene conversion - apparently non-reciprocal transfer of sequence information between homologous DNA sequences - has been reported in various organisms. Frequent association of gene conversion with reciprocal exchange (crossing-over) of the flanking sequences in meiosis has formed the basis of the current view that gene conversion reflects events at the site of interaction during homologous recombination. In order to analyze mechanisms of gene conversion and homologous recombination in an Escherichia coli strain with an active RecF pathway (recBC sbcBC), we first established in cells of this strain a plasmid carrying two mutant neo genes, each deleted for a different gene segment, in inverted orientation. We then selected kanamycin-resistant plasmids that had reconstituted an intact neo + gene by homologous recombination. We found that all the neo + plasmids from these clones belonged to the gene-conversion type in the sense that they carried one neo + gene and retained one of the mutant neo genes. This apparent gene conversion was, however, only very rarely accompanied by apparent crossing-over of the flanking sequences. This is in contrast to the case in a rec + strain. or in a strain with an active RecE pathway (recBC sbcA). Our further analyses, especially comparisons with apparent gene conversion in the rec + strain, led us to propose a mechanism for this biased gene conversion. This successive half crossing-over model proposes that the elementary recombinational process is half crossing;-over in the sense that it generates only one recombinant DNA duplex molecule, and leaves one or two free end(s), out of two parental DNA duplexes. The resulting free end is, the model assumes, recombinogenic and frequently engages in a second round of half crossing-over with the recombinant duplex. The products resulting from such interaction involving two molecules of the plasmid would be classified as belonging to the gene-conversion type without crossing-over. We constructed a dimeric molecule that mimics the intermediate form hypothesized in this model and introduced it into cells. Biased gene conversion products were obtained in this reconstruction experiment. The half crossing-over mechanism can also explain formation of huge linear multimers of bacterial plasmids, the nature of transcribable recombination products in bacterial conjugation, chromosomal gene conversion not accompanied by flanking exchange (like that in yeast mating-type switching), and antigenic variation in microorganisms.  相似文献   

6.
In this article we infer the rates of gene conversion and crossing over in Arabidopsis thaliana from population genetic data. Our data set is a genomewide survey consisting of 1347 fragments of length 600 bp sequenced in 96 accessions. It has several orders of magnitude more markers than any previous nonhuman study. This allows for more accurate inference as well as a detailed comparison between theoretical expectations and observations. Our methodology is specifically set to account for deviations such as recurrent mutations or a skewed frequency spectrum. We found that even if some components of the model clearly do not fit, the pattern of LD conforms to theoretical expectations quite well. The ratio of gene conversion to crossing over is estimated to be around one. We also find evidence for fine-scale variations of the crossing-over rate.  相似文献   

7.
C. Grimm  J. Bahler    J. Kohli 《Genetics》1994,136(1):41-51
At the ade6 locus of Schizosaccharomyces pombe flanking markers have been introduced as well as five silent restriction site polymorphisms: four in the 5' upstream region and one in the middle of the gene. The mutations ade6-706, ade6-M26 (both at the 5' end) and ade6-51 (middle of the gene) were used as partners for crosses with the 3' mutation ade6-469. From these three types of crosses, wild-type recombinants were selected and analyzed genetically to assess association with crossing-over and physically to determine conversion tract lengths. The introduced restriction site polymorphisms (five vs. only one) neither influenced the pattern of recombinant types nor the distribution of conversion tracts. The hotspot mutation M26 enhances crossing-over and conversion to the same proportion. M26 not only stimulates conversion at the 5' end, but does this also (to a lower extent) at the 3' end of ade6 at a distance of more than 1 kb. The majority of meiotic conversion tracts are continuous and postmeiotic segregation of polymorphic sites is rare. Conversion tracts are slightly shorter with M26 in comparison with its control 706. The mean minimal length of tracts varies from 670 bp (M26) to 890 bp (706) to 1290 bp (51). It is concluded that M26 acts as an initiation site of recombination or enhances initiation of recombination. M26 does not act by termination of conversion. A region of recombination initiation exists at the 5' end of the ade6 gene also in the absence of the ade6-M26 hotspot mutation.  相似文献   

8.
Andolfatto P  Wall JD 《Genetics》2003,165(3):1289-1305
Previous multilocus surveys of nucleotide polymorphism have documented a genome-wide excess of intralocus linkage disequilibrium (LD) in Drosophila melanogaster and D. simulans relative to expectations based on estimated mutation and recombination rates and observed levels of diversity. These studies examined patterns of variation from predominantly non-African populations that are thought to have recently expanded their ranges from central Africa. Here, we analyze polymorphism data from a Zimbabwean population of D. melanogaster, which is likely to be closer to the standard population model assumptions of a large population with constant size. Unlike previous studies, we find that levels of LD are roughly compatible with expectations based on estimated rates of crossing over. Further, a detailed examination of genes in different recombination environments suggests that markers near the telomere of the X chromosome show considerably less linkage disequilibrium than predicted by rates of crossing over, suggesting appreciable levels of exchange due to gene conversion. Assuming that these populations are near mutation-drift equilibrium, our results are most consistent with a model that posits heterogeneity in levels of exchange due to gene conversion across the X chromosome, with gene conversion being a minor determinant of LD levels in regions of high crossing over. Alternatively, if levels of exchange due to gene conversion are not negligible in regions of high crossing over, our results suggest a marked departure from mutation-drift equilibrium (i.e., toward an excess of LD) in this Zimbabwean population. Our results also have implications for the dynamics of weakly selected mutations in regions of reduced crossing over.  相似文献   

9.
The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction.  相似文献   

10.
11.
A. R. Godwin  R. M. Liskay 《Genetics》1994,136(2):607-617
We examined the effects of insertion mutations on intrachromosomal recombination. A series of mouse L cell lines carrying mutant herpes simplex virus thymidine kinase (tk) heteroalleles was generated; these lines differed in the nature of their insertion mutations. In direct repeat lines with different large insertions in each gene, there was a 20-fold drop in gene conversion rate and only a five-fold drop in crossover rate relative to the analogous rates in lines with small insertions in each gene. Surprisingly, in direct repeat lines carrying the same large insertion in each gene, there was a larger drop in both types of recombination. When intrachromosomal recombination between inverted repeat tk genes with different large insertions was examined, we found that the rate of gene conversion dropped five-fold relative to small insertions, while the rate of crossing over was unaffected. The differential effects on conversion and crossing over imply that gene conversion is more sensitive to insertion mutation size. Finally, the fraction of gene conversions associated with a crossover increased from 2% for inverted repeats with small insertions to 18% for inverted repeats with large insertions. One interpretation of this finding is that during intrachromosomal recombination in mouse cells long conversion tracts are more often associated with crossing over.  相似文献   

12.
Chromosomal inversions shape recombination landscapes, and species differing by inversions may exhibit reduced gene flow in these regions of the genome. Though single crossovers within inversions are not usually recovered from inversion heterozygotes, the recombination barrier imposed by inversions is nuanced by noncrossover gene conversion. Here, we provide a genomewide empirical analysis of gene conversion rates both within species and in species hybrids. We estimate that gene conversion occurs at a rate of 1 × 10–5 to 2.5 × 10–5 converted sites per bp per generation in experimental crosses within Drosophila pseudoobscura and between D. pseudoobscura and its naturally hybridizing sister species D. persimilis. This analysis is the first direct empirical assessment of gene conversion rates within inversions of a species hybrid. Our data show that gene conversion rates in interspecies hybrids are at least as high as within‐species estimates of gene conversion rates, and gene conversion occurs regularly within and around inverted regions of species hybrids, even near inversion breakpoints. We also found that several gene conversion events appeared to be mitotic rather than meiotic in origin. Finally, we observed that gene conversion rates are higher in regions of lower local sequence divergence, yet our observed gene conversion rates in more divergent inverted regions were at least as high as in less divergent collinear regions. Given our observed high rates of gene conversion despite the sequence differentiation between species, especially in inverted regions, gene conversion has the potential to reduce the efficacy of inversions as barriers to recombination over evolutionary time.  相似文献   

13.
We have inserted a histone H1-GFP fusion gene adjacent to three loci on different chromosomes of Neurospora crassa and made mating pairs in which a wild type version of GFP is crossed to one with a mutation in the 5' end of GFP. The loci are his-3, am and his-5, chosen because recombination mechanisms appear to differ between his-3 and am, and because crossing over adjacent to his-5, like his-3, is regulated by rec-2. At his-3, the frequencies of crossing over between GFP and the centromere and of conversion of 5'GFP to GFP(+) are comparable to those obtained by classical recombination assays, as is the effect of rec-2 on these frequencies, suggesting that our system does not alter the process of recombination. At each locus we have obtained sufficient data, on both gene conversion and crossing over, to be able to assess the effect of deletion of any gene involved in recombination. In addition, crosses between a GFP(+) strain and one with normal sequence at all three loci have been used to measure the interval to the centromere and to show that GFP experiences gene conversion with this system. Since any gene expressed in meiosis is silenced in Neurospora if hemizygous, any of our GFP(+) strains can be used as a quick screen to determine if a gene deleted by the Neurospora Genome Project is involved in crossing over or gene conversion.  相似文献   

14.
BACKGROUND: Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution. STUDY DESIGN/RESULTS: Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation. SIGNIFICANCE: These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.  相似文献   

15.
Meiotic recombination is a fundamental biological event and one of the principal evolutionary forces responsible for shaping genetic variation within species. In addition to its fundamental role, recombination is central to several critical applied problems. The most important example is "association mapping" in populations, which is widely hoped to help find genes that influence genetic diseases (Carlson et al., 2004; Clark, 2003). Hence, a great deal of recent attention has focused on problems of inferring the historical derivation of sequences in populations when both mutations and recombinations have occurred. In the algorithms literature, most of that recent work has been directed to single-crossover recombination. However, gene-conversion is an important, and more common, form of (two-crossover) recombination which has been much less investigated in the algorithms literature. In this paper, we explicitly incorporate gene-conversion into discrete methods to study historical recombination. We are concerned with algorithms for identifying and locating the extent of historical crossing-over and gene-conversion (along with single-nucleotide mutation), and problems of constructing full putative histories of those events. The novel technical issues concern the incorporation of gene-conversion into recently developed discrete methods (Myers and Griffiths, 2003; Song et al., 2005) that compute lower and upper-bound information on the amount of needed recombination without gene-conversion. We first examine the most natural extension of the lower bound methods from Myers and Griffiths (2003), showing that the extension can be computed efficiently, but that this extension can only yield weak lower bounds. We then develop additional ideas that lead to higher lower bounds, and show how to solve, via integer-linear programming, a more biologically realistic version of the lower bound problem. We also show how to compute effective upper bounds on the number of needed single-crossovers and gene-conversions, along with explicit networks showing a putative history of mutations, single-crossovers and gene-conversions. Both lower and upper bound methods can handle data with missing entries, and the upper bound method can be used to infer missing entries with high accuracy. We validate the significance of these methods by showing that they can be effectively used to distinguish simulation-derived sequences generated without gene-conversion from sequences that were generated with gene-conversion. We apply the methods to recently studied sequences of Arabidopsis thaliana, identifying many more regions in the sequences than were previously identified (Plagnol et al., 2006), where gene-conversion may have played a significant role. Demonstration software is available at www.csif.cs.ucdavis.edu/~gusfield.  相似文献   

16.
Two mechanisms for gene conversion and homologous recombination were discussed. (1) The double-strand break repair model. A double-strand break is expanded to a gap, which is then repaired by copying a homologous sequence. The gene conversion is often accompanied by crossing-over of the flanking sequences. We obtained evidence for this model in Red pathway of bacteriophage lambda and RecE pathway of E. coli. (2) The successive half crossing-over model. Half crossing-over leaves one recombinant duplex and one or two end(s) out of two parental duplexes. The resulting ends are, in turn, recombinogenic. Successive rounds of the half crossing-over mechanism explains why apparent plasmid gene conversion in RecF pathway of E. coli is not accompanied by crossing-over. This model can explain chromosomal gene conversion if we assume that the donor is first replicated. Gene conversion during mating-type switching in yeast, antigenic variation in unicellular microorganisms, and chromosomal gene conversion in mammalian somatic cells are explained by this model. Distinguishing between these two mechanisms is important in understanding recombination in yeast and mammalian cells and also in its application to gene targeting.  相似文献   

17.
Wall JD 《Genetics》2004,167(3):1461-1473
We introduce a new method for jointly estimating crossing-over and gene conversion rates using sequence polymorphism data. The method calculates probabilities for subsets of the data consisting of three segregating sites and then forms a composite likelihood by multiplying together the probabilities of many subsets. Simulations show that this new method performs better than previously proposed methods for estimating gene conversion rates, but that all methods require large amounts of data to provide reliable estimates. While existing methods can easily estimate an "average" gene conversion rate over many loci, they cannot reliably estimate gene conversion rates for a single region of the genome.  相似文献   

18.
Gene conversion, one of the two mechanisms of homologous recombination, involves the unidirectional transfer of genetic material from a 'donor' sequence to a highly homologous 'acceptor'. Considerable progress has been made in understanding the molecular mechanisms that underlie gene conversion, its formative role in human genome evolution and its implications for human inherited disease. Here we assess current thinking about how gene conversion occurs, explore the key part it has played in fashioning extant human genes, and carry out a meta-analysis of gene-conversion events that are known to have caused human genetic disease.  相似文献   

19.
A. Aguilera  H. L. Klein 《Genetics》1989,123(4):683-694
A yeast intrachromosomal recombination system based on an inverted repeat has been designed to examine mitotic gene conversion tract length and the association of crossing over with gene conversion as a function of the conversion tract length. Short conversion tracts are found to be preferentially noncrossover while conversion tracts longer than 1.16 kb show a 50% association with crossover. Mutation in the excision repair gene RAD1 leads to a reduction in conversion tracts of at least 1.16 kb and a reduction in crossovers associated with conversion, regardless of the length of the conversion tract. Mutation in the excision repair gene RAD3, which encodes a DNA helicase, also leads to a reduction in conversion tracts of at least 1.16 kb, but has no effect on the frequency of associated crossovers. The roles of RAD1 and RAD3 in recombination are discussed.  相似文献   

20.
Homologous recombination accomplishes the exchange of genetic information between two similar or identical DNA duplexes. It can occur either by gene conversion, a process of unidirectional genetic exchange, or by reciprocal crossing over. Homologous recombination is well known for its role in generating genetic diversity in meiosis and, in mitosis, as a DNA repair mechanism. In the immune system, the evidence suggests a role for homologous recombination in Ig gene evolution and in the diversification of Ab function. Previously, we reported the occurrence of homologous recombination between repeated, donor and recipient alleles of the Ig H chain mu gene C (Cmu) region residing at the Ig mu locus in mouse hybridoma cells. In this study, we constructed mouse hybridoma cell lines bearing Cmu region heteroalleles to learn more about the intrachromosomal homologous recombination process. A high frequency of homologous recombination (gene conversion) was observed for markers spanning the entire recipient Cmu region, suggesting that recombination might initiate at random sites within the Cmu region. The Cmu region heteroalleles were equally proficient as either conversion donors or recipients. Remarkably, when the same Cmu heteroalleles were tested for recombination in ectopic genomic positions, the mean frequency of gene conversion was reduced by at least 65-fold. These results are consistent with the murine IgH mu locus behaving as a hot spot for intrachromosomal homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号