首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D Xu  M Sheves    K Schulten 《Biophysical journal》1995,69(6):2745-2760
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.  相似文献   

2.
M Nina  B Roux    J C Smith 《Biophysical journal》1995,68(1):25-39
The light-driven proton pump, bacteriorhodopsin (bR) contains a retinal molecule with a Schiff base moiety that can participate in hydrogen-bonding interactions in an internal, water-containing channel. Here we combine quantum chemistry and molecular mechanics techniques to determine the geometries and energetics of retinal Schiff base-water interactions. Ab initio molecular orbital calculations are used to determine potential surfaces for water-Schiff base hydrogen-bonding and to characterize the energetics of rotation of the C-C single bond distal and adjacent to the Schiff base NH group. The ab initio results are combined with semiempirical quantum chemistry calculations to produce a data set used for the parameterization of a molecular mechanics energy function for retinal. Using the molecular mechanics force field the hydrated retinal and associated bR protein environment are energy-minimized and the resulting geometries examined. Two distinct sites are found in which water molecules can have hydrogen-bonding interactions with the Schiff base: one near the NH group of the Schiff base in a polar region directed towards the extracellular side, and the other near a retinal CH group in a relatively nonpolar region, directed towards the cytoplasmic side.  相似文献   

3.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

4.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pKa of the Schiff base (the primary proton donor) and the low pKa of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

5.
Protein-bound internal water molecules are essential features of the structure and function of microbial rhodopsins. Besides structural stabilization, they act as proton conductors and even proton storage sites. Currently, the most understood model system exhibiting such features is bacteriorhodopsin (bR). During the last 20 years, the importance of water molecules for proton transport has been revealed through this protein. It has been shown that water molecules are as essential as amino acids for proton transport and biological function. In this review, we present an overview of the historical development of this research on bR. We furthermore summarize the recently discovered protein-bound water features associated with proton transport. Specifically, we discuss a pentameric water/amino acid arrangement close to the protonated Schiff base as central proton-binding site, a protonated water cluster as proton storage site at the proton-release site, and a transient linear water chain at the proton uptake site. We highlight how protein conformational changes reposition or reorient internal water molecules, thereby guiding proton transport. Last, we compare the water positions in bR with those in other microbial rhodopsins to elucidate how protein-bound water molecules guide the function of microbial rhodopsins. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

6.
Wassenaar TA  Daura X  Padrós E  Mark AE 《Proteins》2009,74(3):669-681
The purple membrane (PM) is a specialized membrane patch found in halophilic archaea, containing the photoreceptor bacteriorhodopsin (bR). It is long known that calcium ions bind to the PM, but their position and role remain elusive to date. Molecular dynamics simulations in conjunction with a highly detailed model of the PM have been used to investigate the stability of calcium ions placed at three proposed cation binding sites within bR, one near the Schiff base, one in the region of the proton release group, and one near Glu9. The simulations suggest that, of the sites investigated, the binding of calcium ions was most likely at the proton release group. Binding in the region of the Schiff base, while possible, was associated with significant changes in local geometry. Calcium ions placed near Glu9 in the interior of bR (simultaneously to a Ca(2+) near the Schiff base and another one near the Glu194-Glu204 site) were not stable. The results obtained are discussed in relation to recent experimental observations and theoretical considerations.  相似文献   

7.
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.  相似文献   

8.
Kandt C  Gerwert K  Schlitter J 《Proteins》2005,58(3):528-537
The proton transfer pathway in a heptahelical membrane protein, the light-driven proton pump bacteriorhodopsin (BR), is probed by a combined approach of structural analysis of recent X-ray models and molecular dynamics (MD) simulations that provide the diffusion pathways of internal and external water molecules. Analyzing the hydrogen-bond contact frequencies of the water molecules with protein groups, the complete proton pathway through the protein is probed. Beside the well-known proton binding sites in the protein interior-the protonated Schiff base, Asp85 and Asp96, and the H(5)O(2) (+) complex stabilized by Glu204 and Glu194-the proton release and uptake pathways to the protein surfaces are described in great detail. Further residues were identified, by mutation of which the proposed pathways can be verified. In addition the diffusion pathway of water 502 from Lys216 to Asp96 is shown to cover the positions of the intruding waters 503 and 504 in the N-intermediate. The transiently established water chain in the N-state provides a proton pathway from Asp96 to the Schiff base in the M- to N-transition in a Grotthus-like mechanism, as concluded earlier from time-resolved Fourier transform infrared experiments [le Coutre et al., Proc Nat Acad Sci USA 1995;92:4962-4966].  相似文献   

9.
The transfer of a proton from the retinal Schiff base to the nearby Asp85 protein group is an essential step in the directional proton-pumping by bacteriorhodopsin. To avoid the wasteful back reprotonation of the Schiff base from Asp85, the protein must ensure that, following Schiff base deprotonation, the energy barrier for back proton-transfer from Asp85 to the Schiff base is larger than that for proton-transfer from the Schiff base to Asp85. Here, three structural elements that may contribute to suppressing the back proton-transfer from Asp85 to the Schiff base are investigated: (i) retinal twisting; (ii) hydrogen-bonding distances in the active site; and (iii) the number and location of internal water molecules. The impact of the pattern of bond twisting on the retinal deprotonation energy is dissected by performing an extensive set of quantum-mechanical calculations. Structural rearrangements in the active site, such as changes of the Thr89:Asp85 distance and relocation of water molecules hydrogen-bonding to the Asp85 acceptor group, may participate in the mechanism which ensures that following the transfer of the Schiff base proton to Asp85 the protein proceeds with the subsequent photocycle steps, and not with back proton transfer from Asp85 to the Schiff base.  相似文献   

10.
Hydration of protein cavities influences protein stability, dynamics, and function. Protein active sites usually contain water molecules that, upon ligand binding, are either displaced into bulk solvent or retained to mediate protein–ligand interactions. The contribution of water molecules to ligand binding must be accounted for to compute accurate values of binding affinities. This requires estimation of the extent of hydration of the binding site. However, it is often difficult to identify the water molecules involved in the binding process when ligands bind on the surface of a protein. Cytochrome P450cam is, therefore, an ideal model system because its substrate binds in a buried active site, displacing partially disordered solvent, and the protein is well characterized experimentally. We calculated the free energy differences for having five to eight water molecules in the active site cavity of the unliganded enzyme from molecular dynamics simulations by thermodynamic integration employing a three-stage perturbation scheme. The computed free energy differences between the hydration states are small (within 12 kJ mol−1) but distinct. Consistent with the crystallographic determination and studies employing hydrostatic pressure, we calculated that, although ten water molecules could in principle occupy the volume of the active site, occupation by five to six water molecules is thermodynamically most favorable. Proteins 32:381–396, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
In many rhodopsins, a positively charged retinal chromophore is stabilized by a negatively charged carboxylate, and the presence of bound water molecules has been found in the Schiff base region by X-ray crystallography of various rhodopsins. Low-temperature Fourier-transform infrared (FTIR) spectroscopy can directly monitor hydrogen-bonding alterations of internal water molecules of rhodopsins. In particular, we found that a bridged water molecule between the Schiff base and Asp 85 in bacteriorhodopsin (BR), a light-driven proton-pump protein, forms an extremely strong hydrogen bond. It is likely that a hydration switch of the water from Asp 85 to Asp 212 plays an important role in the proton transfer in the Schiff base region of BR. Comprehensive studies of archaeal and visual rhodopsins have revealed that strongly hydrogen-bonded water molecules are only found in the proteins exhibiting proton-pump activities. Strongly hydrogen-bonded water molecules and its transient weakening may be essential for the proton-pump function of rhodopsins.  相似文献   

12.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.  相似文献   

13.
In dark-adapted bacteriorhodopsin (bR) the retinal moiety populates two conformers: all-trans and (13,15)cis. Here we examine factors influencing the thermodynamic equilibrium and conformational transition between the two forms, using molecular mechanics and dynamics calculations. Adiabatic potential energy mapping indicates that whereas the twofold intrinsic torsional potentials of the C13==C14 and C15==N16 double bonds favor a sequential torsional pathway, the protein environment favors a concerted, bicycle-pedal mechanism. Which of these two pathways will actually occur in bR depends on the as yet unknown relative weight of the intrinsic and environmental effects. The free energy difference between the conformers was computed for wild-type and modified bR, using molecular dynamics simulation. In the wild-type protein the free energy of the (13,15)cis retinal form is calculated to be 1.1 kcal/mol lower than the all-trans retinal form, a value within approximately kBT of experiment. In contrast, in isolated retinal the free energy of the all-trans state is calculated to be 2.1 kcal/mol lower than (13,15)cis. The free energy differences are similar to the adiabatic potential energy differences in the various systems examined, consistent with an essentially enthalpic origin. The stabilization of the (13,15)cis form in bR relative to the isolated retinal molecule is found to originate from improved protein-protein interactions. Removing internal water molecules near the Schiff base strongly stabilizes the (13,15)cis form, whereas a double mutation that removes negative charges in the retinal pocket (Asp85 to Ala; Asp212 to Ala) has the opposite effect.  相似文献   

14.
Protonated networks of internal water molecules appear to be involved in proton transfer in various integral membrane proteins. High-resolution x-ray studies of protein crystals at low temperature deliver mean positions of most internal waters, but only limited information about fluctuations within such H-bonded networks formed by water and residues. The question arises as to how water molecules behave inside and on the surface of a fluctuating membrane protein under more physiological conditions. Therefore, as an example, long-time molecular dynamics simulations of bacteriorhodopsin were performed with explicit membrane/water environment. Based on a recent x-ray model the bacteriorhodopsin trimer was inserted in a fully solvated 16 x 16 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-bilayer patch, resulting in a system of approximately 84,000 atoms. Unrestrained molecular dynamics calculations of 5 ns were performed using the GROMACS package and force field. Mean water densities were computed to describe the anisotropic distribution of internal water molecules. In the whole protein two larger areas of higher water density are identified. They are located between the central proton binding site, the Schiff base, and the extracellular proton release site. Separated by Arg-82 these water clusters could provide a proton release pathway in a Grotthus-like mechanism as indicated by a continuum absorbance change observed during the photocycle by time-resolved Fourier transform infrared spectroscopy. Residues are identified which are H-bonded to the water clusters and are therefore facilitating proton conduction. Their influence on proton transfer via the H-bonded network as indicated by the continuum absorbance change is predicted. This may explain why several site-directed mutations alter the proton release kinetics without a direct involvement in proton transfer.  相似文献   

15.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), three water molecules participate in a pentagonal cluster that stabilizes an electric quadrupole buried inside the protein. In low-temperature Fourier transform infrared (FTIR) K minus BR spectra, the frequencies of water bands suggest extremely strong hydrogen bonding conditions in BR. The three observed water O-D stretches, at 2323, 2292, and 2171 cm(-1), are probably associated with water that interacts with the negative charges in the Schiff base region. Retinal isomerization weakens these hydrogen bonds in the K intermediate, but not in the later intermediates such as L, M, and N. In these states, spectral changes of water bands appeared only in the >2500 cm(-1) region, which correspond to weak hydrogen bonds. This observation suggests that after the K state the water molecules in the Schiff base region find a hydrogen bonding acceptor. We propose here a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have increased the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85. The present results also suggest that the deprotonated Asp96 in the N intermediate is stabilized in a manner different from that of Asp85 in BR.  相似文献   

16.
Zadok U  Asato AE  Sheves M 《Biochemistry》2005,44(23):8479-8485
The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.  相似文献   

17.
The structure and activity of a protein molecule are strongly influenced by the extent of hydration of its cavities. This is, in turn, related to the free energy change on transfer of a water molecule from bulk solvent into a cavity. Such free energy changes have been calculated for two cavities in a sulfate-binding protein. One of these cavities contains a crystallographically observed water molecule while the other does not. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each of the cavities from molecular dynamics simulations of two separate events: the removal of a water molecule from pure water, and the introduction of a water molecule into each protein cavity. From the simulations for the pure water system, the excess chemical potential of water was computed to be -6.4 +/- 0.4 kcal/mol, in accord with experiment and with other recent theoretical calculations. For the protein cavity containing an experimentally observed water molecule, the free energy change on hydrating it with one water molecule was calculated as -10.0 +/- 1.3 kcal/mol, indicating the high probability that this cavity is occupied by a water molecule. By contrast, for the cavity in which no water molecules were experimentally observed, the free energy change on hydrating it with one water molecule was calculated as 0.2 +/- 1.5 kcal/mol, indicating its low occupancy by water. The agreement of these results with experiment suggests that thermodynamic simulation methods may become useful for the prediction and analysis of internal hydration in proteins.  相似文献   

18.
The structural and thermodynamic factors responsible for the singly and doubly occupied saturation states of the gramicidin channel are investigated with molecular dynamics simulations and free energy perturbation methods. The relative free energy of binding of all of the five common cations Li+, Na+, K+, Rb+, and Cs+ is calculated in the singly and doubly occupied channel and in bulk water. The atomic system, which includes the gramicidin channel, a model membrane made of neutral Lennard-Jones particles and 190 explicit water molecules to form the bulk region, is similar to the one used in previous work to calculate the free energy profile of a Na+ ion along the axis of the channel. In all of the calculations, the ions are positioned in the main binding sites located near the entrances of the channel. The calculations reveal that the doubly occupied state is relatively more favorable for the larger ions. Thermodynamic decomposition is used to show that the origin of the trend observed in the calculations is due to the loss of favorable interactions between the ion and the single file water molecules inside the channel. Small ions are better solvated by the internal water molecules in the singly occupied state than in the doubly occupied state; bigger ions are solvated almost as well in both occupation states. Water-channel interactions play a role in the channel response. The observed trends are related to general thermodynamical properties of electrolyte solutions.  相似文献   

19.
Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is approximately 95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR.  相似文献   

20.
Molecular dynamics simulations of Staphylococcal nuclease and of 10 variants with internal polar or ionizable groups were performed to investigate systematically the molecular determinants of hydration of internal cavities and pockets in proteins. In contrast to apolar cavities in rigid carbon structures, such as nanotubes or buckeyballs, internal cavities in proteins that are large enough to house a few water molecules will most likely be dehydrated unless they contain a source of polarity. The water content in the protein interior can be modulated by the flexibility of protein elements that interact with water, which can impart positional disorder to water molecules, or bias the pattern of internal hydration that is stabilized. This might explain differences in the patterns of hydration observed in crystal structures obtained at cryogenic and room temperature conditions. The ability of molecular dynamics simulations to determine the most likely sites of water binding in internal pockets and cavities depends on its efficiency in sampling the hydration of internal sites and alternative protein and water conformations. This can be enhanced significantly by performing multiple molecular dynamics simulations as well as simulations started from different initial hydration states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号