首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA binding specificity of homeodomains.   总被引:54,自引:0,他引:54  
A Laughon 《Biochemistry》1991,30(48):11357-11367
  相似文献   

2.
3.
4.
5.
Homeodomains are helix-turn-helix type DNA-binding domains that exhibit sequence-specific DNA binding by insertion of their "recognition" alpha helices into the major groove and a short N-terminal arm into the adjacent minor groove without inducing substantial distortion of the DNA. The stability and DNA binding of four representatives of this family, MATalpha2, engrailed, Antennapedia, and NK-2, and truncated forms of the last two lacking their N-terminal arms have been studied by a combination of optical and microcalorimetric methods at different temperatures and salt concentrations. It was found that the stability of the free homeodomains in solution is rather low and, surprisingly, is reduced by the presence of the N-terminal arm for the Antennapedia and NK-2 domains. Their stabilities depend significantly upon the presence of salt: strongly for NaCl but less so for NaF, demonstrating specific interactions with chloride ions. The enthalpies of association of the homeodomains with their cognate DNAs are negative, at 20 degrees C varying only between -12 and -26 kJ/mol for the intact homeodomains, and the entropies of association are positive; i.e., DNA binding is both enthalpy- and entropy-driven. Analysis of the salt dependence of the association constants showed that the electrostatic component of the Gibbs energy of association resulting from the entropy of mixing of released ions dominates the binding, being about twice the magnitude of the nonelectrostatic component that results from dehydration of the protein/DNA interface, van der Waals interactions, and hydrogen bonding. A comparison of the effects of NaCl/KCl with NaF showed that homeodomain binding results in a release not only of cations from the DNA phosphates but also of chloride ions specifically associated with the proteins. The binding of the basic N-terminal arms in the minor groove is entirely enthalpic with a negative heat capacity effect, i.e., is due to sequence-specific formation of hydrogen bonds and hydrophobic interactions rather than electrostatic contacts with the DNA phosphates.  相似文献   

6.
7.
We present an analysis of 10 blind predictions prepared for a recent conference, “Critical Assessment of Techniques for Protein Structure Prediction.”1 The sequences of these proteins are not detectably similar to those of any protein in the structure database then available, but we attempted, by a threading method, to recognize similarity to known domain folds. Four of the 10 proteins, as we subsequently learned, do indeed show significant similarity to then-known structures. For 2 of these proteins the predictions were accurate, in the sense that a similar structure was at or near the top of the list of threading scores, and the threading alignment agreed well with the corresponding structural alignment. For the best predicted model mean alignment error relative to the optimal structural alignment was 2.7 residues, arising entirely from small “register shifts” of strands or helices. In the analysis we attempt to identify factors responsible for these successes and failures. Since our threading method does not use gap penalties, we may readily distinguish between errors arising from our prior definition of the “cores” of known structures and errors arising from inherent limitations in the threading potential. It would appear from the results that successful substructure recognition depends most critically on accurate definition of the “fold” of a database protein. This definition must correctly delineate substructures that are, and are not, likely to be conserved during protein evolution. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
Homeoproteins are defined by the structure of their DNA-binding domain, the homeodomain. Intercellular transfer of homeoprotein was observed ex vivo between animal cells and in vivo in higher plants. In the latter case, transfer is through intercytoplasmic channels that connect plant cells, but these do not exist in animals. Here, we show that the homeodomain of KNOTTED1, a maize homeoprotein, is transferred between animal cells and that a mutation in the homeodomain blocking the intercellular transfer of KNOTTED1 in plants also inhibits the transfer of the KNOTTED1 homeodomain in animal cells. This mutation decreases nuclear addressing, and its effect on nuclear import and intercellular transfer is reverted by the addition of an ectopic nuclear localization signal. We propose that, despite evolutionary distance and the differences in multicellular organization, similar mechanisms are at work for intercellular transfer of homeoprotein in plants and animals. Furthermore, our results suggest that, at least in animals, homeodomain secretion requires passage through the nucleus.  相似文献   

10.
11.
12.
13.
14.
Genes containing a homeobox can be divided into classes based on the distinctive peptide sequences of their diverged homeodomains. Many of these classes, including Antennapedia, engrailed and paired, are strongly conserved in higher multicellular animals, but have not previously been found in platyhelminths, the flatworms which represent the most primitive bilateral metazoans. We have screened cDNA libraries of the platyhelminth Schistosoma mansoni using a degenerate oligonucleotide derived from the third helix of the homeodomain, and have identified numerous schistosome homeobox-containing sequences, including members of the Antennapedia, engrailed and paired classes. The schistosome homeodomain sequences are more similar to the higher animals sequences in their respective classes than they are to each other, indicating that the establishment of these three distinctive classes is at least as ancient as the flatworms. Our data suggest that the ancestral functions of the Antennapedia, engrailed and paired classes involve fundamental features of all bilateral metazoan development. The putative full-length coding sequence of the S. mansoni en homologue is presented.  相似文献   

15.
The in vitro DNA binding properties of wild-type and mutant fushi tarazu homeodomains (ftz HD) have been analysed. The DNA binding properties of the ftz HD are very similar to those of the Antp HD. In interference experiments with mutant ftz HDs, close approaches between specific portions of the ftz HD peptide and specific regions of the binding site DNA were mapped. A methylation interference, G7 on the beta strand of BS2, is absent from the interference pattern with a mutant ftz HD [ftz (R43A) HD] in which the Arg43 at the second position of helix III (the recognition helix) is replaced by an Ala. This indicated that Arg43 of the ftz HD is in close proximity to the N7 of G7 of the beta strand of BS2 in the major groove. The methylation and ethylation interference patterns with the ftz (NTD) HD, in which the first six amino acids of the homeodomain were deleted, were extensively altered relative to the ftz HD patterns. Methylation of A11 and G12 of the alpha strand and ethylation of the phosphate of nucleotide A12 of the alpha strand no longer interfere with binding. This indicated that the first six amino acids of the homeodomain of ftz interact with A11 of the alpha strand in the minor groove, the phosphate of the nucleotide A13 on the alpha strand and G12 of the alpha strand in the adjacent major groove of BS2. In a binding study using a change of specificity mutation [ftz (Q50K) HD], in which the Gln50 at the ninth position of the third helix is exchanged for a Lys (as in the bicoid HD), and variant binding sites, we concluded that position 50 of the ftz HD and the ftz (Q50K) HD peptides interacts with base pairs at positions 6 and 7 of BS2. These three points of contact allowed us to propose a crude orientation of the ftz HD within the protein-DNA complex. We find that the ftz HD and the Antp HD peptides contact DNA in a similar way.  相似文献   

16.
Yang YD  Park C  Kihara D 《Proteins》2008,73(3):581-596
Optimizing weighting factors for a linear combination of terms in a scoring function is a crucial step for success in developing a threading algorithm. Usually weighting factors are optimized to yield the highest success rate on a training dataset, and the determined constant values for the weighting factors are used for any target sequence. Here we explore completely different approaches to handle weighting factors for a scoring function of threading. Throughout this study we use a model system of gapless threading using a scoring function with two terms combined by a weighting factor, a main chain angle potential and a residue contact potential. First, we demonstrate that the optimal weighting factor for recognizing the native structure differs from target sequence to target sequence. Then, we present three novel threading methods which circumvent training dataset-based weighting factor optimization. The basic idea of the three methods is to employ different weighting factor values and finally select a template structure for a target sequence by examining characteristics of the distribution of scores computed by using the different weighting factor values. Interestingly, the success rate of our approaches is comparable to the conventional threading method where the weighting factor is optimized based on a training dataset. Moreover, when the size of the training set available for the conventional threading method is small, our approach often performs better. In addition, we predict a target-specific weighting factor optimal for a target sequence by an artificial neural network from features of the target sequence. Finally, we show that our novel methods can be used to assess the confidence of prediction of a conventional threading with an optimized constant weighting factor by considering consensus prediction between them. Implication to the underlined energy landscape of protein folding is discussed.  相似文献   

17.
The majority of studies employing short tandem repeats (STRs) require investigation of several of these genetic markers. As such, we demonstrate the feasibility of the trinucleotide threading (TnT) approach for scalable analysis of STRs. The TnT method represents a parallel amplification alternative that addresses the obstacles associated with multiplex PCR. In this study, analysis of the STR fragments was performed with capillary gel electrophoresis; however, it should be possible to combine our approach with the massive 454 sequencing platform to considerably increase the number of targeted STRs.  相似文献   

18.
A nonamer peptide containing a diene group in the center of the sequence was synthesized. When the peptide forms an antiparallel beta-sheet, the diene groups align ca. 5 A apart on the beta-sheet. The diene groups successfully photopolymerized without distorting the beta-sheet structure. The obtained beta-sheet showed high stability against acid denaturation and addition of 1,1,1,3,3,3-hexafluoroisopropanol.  相似文献   

19.
DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号